1
|
Hackmann TJ. Redefining the coenzyme A transferase superfamily with a large set of manually-annotated proteins. Protein Sci 2022; 31:864-881. [PMID: 35049101 PMCID: PMC8927868 DOI: 10.1002/pro.4277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The coenzyme A (CoA) transferases are a superfamily of proteins central to the metabolism of acetyl-CoA and other CoA thioesters. They are diverse group, catalyzing over a hundred biochemical reactions and spanning all three domains of life. A deeply rooted idea, proposed two decades ago, is these enzymes fall into three families (I, II, III). Here we find they fall into different families, which we achieve by analyzing all CoA transferases characterized to date. We manually annotated 94 CoA transferases with functional information (including rates of catalysis for 208 reactions) from 97 publications. This represents all enzymes we could find in the primary literature, and it is double the number annotated in four protein databases (BRENDA, KEGG, MetaCyc, UniProt). We found family I transferases are not closely related to each other in terms of sequence, structure, and reactions catalyzed. This family is not even monophyletic. These problems are solved by regrouping the three families into six, including one family with many non-CoA transferases. The problem (and solution) became apparent only by analyzing our large set of manually-annotated proteins. It would have been missed if we had used the small number of proteins annotated in UniProt and other databases. Our work is important to understanding the biology of CoA transferases. It also warns investigators doing phylogenetic analyses of proteins to go beyond information in databases. This article is protected by copyright. All rights reserved.
Collapse
|
2
|
Leger MM, Gawryluk RMR, Gray MW, Roger AJ. Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 2013; 8:e69532. [PMID: 24086244 PMCID: PMC3785491 DOI: 10.1371/journal.pone.0069532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Diverse, distantly-related eukaryotic lineages have adapted to low-oxygen environments, and possess mitochondrion-related organelles that have lost the capacity to generate adenosine triphosphate (ATP) through oxidative phosphorylation. A subset of these organelles, hydrogenosomes, has acquired a set of characteristic ATP generation enzymes commonly found in anaerobic bacteria. The recipient of these enzymes could not have survived prior to their acquisition had it not still possessed the electron transport chain present in the ancestral mitochondrion. In the divergence of modern hydrogenosomes from mitochondria, a transitional organelle must therefore have existed that possessed both an electron transport chain and an anaerobic ATP generation pathway. Here, we report a modern analog of this organelle in the habitually aerobic opportunistic pathogen, Acanthamoeba castellanii. This organism possesses a complete set of enzymes comprising a hydrogenosome-like ATP generation pathway, each of which is predicted to be targeted to mitochondria. We have experimentally confirmed the mitochondrial localizations of key components of this pathway using tandem mass spectrometry. This evidence is the first supported by localization and proteome data of a mitochondrion possessing both an electron transport chain and hydrogenosome-like energy metabolism enzymes. Our work provides insight into the first steps that might have occurred in the course of the emergence of modern hydrogenosomes.
Collapse
Affiliation(s)
- Michelle M. Leger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan M. R. Gawryluk
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael W. Gray
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Popham HJR, Grasela JJ, Goodman CL, McIntosh AH. Baculovirus infection influences host protein expression in two established insect cell lines. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1237-1245. [PMID: 20362582 DOI: 10.1016/j.jinsphys.2010.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/12/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
We identified host proteins that changed in response to host cell susceptibility to baculovirus infection. We used three baculovirus-host cell systems utilizing two cell lines derived from pupal ovaries, Hz-AM1 (from Helicoverpa zea) and Hv-AM1 (from Heliothis virescens). Hv-AM1 cells are permissive to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and semi-permissive to H. zea single nucleopolyhedrovirus (HzSNPV). Hz-AM1 cells are non-permissive to AcMNPV. We challenged each cell line with baculovirus infection and after 24h determined protein identities by MALDI TOF/TOF mass spectrometry. For Hv-AM1 cells, 21 proteins were identified, and for Hz-AM1 cells, 19 proteins were newly identified (with 8 others having been previously identified). In the permissive relationship, 18 of the proteins changed in expression by 70% or more in AcMNPV infected Hv-AM1 cells as compared with non-infected controls; 12 were significantly decreased and 6 cellular proteins were significantly increased. We also identified 3 virus-specific proteins. In the semi-permissive infections, eight proteins decreased by 2-fold or more. Non-permissive interactions did not lead to substantial changes in host cell protein expression. We hypothesize that some of these proteins act in determining host cell specificity for baculoviruses.
Collapse
Affiliation(s)
- Holly J R Popham
- USDA - Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA.
| | | | | | | |
Collapse
|
4
|
Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 2010; 40:387-97. [PMID: 20085767 DOI: 10.1016/j.ijpara.2009.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation.
Collapse
Affiliation(s)
- Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
5
|
Liu YL, Zhao Y, Dai ZM, Chen HM, Yang WJ. Formation of diapause cyst shell in brine shrimp, Artemia parthenogenetica, and its resistance role in environmental stresses. J Biol Chem 2009; 284:16931-16938. [PMID: 19395704 DOI: 10.1074/jbc.m109.004051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Artemia has attracted much attention for its ability to produce encysted embryos wrapped in a protective shell when subject to extremely harsh environmental conditions. However, what the cyst shell is synthesized from and how the formative process is performed remains, as yet, largely unknown. Over 20 oviparous specifically expressed genes were identified through screening the subtracted cDNA library enriched between oviparous and ovoviviparous Artemia ovisacs. Among them, a shell gland-specifically expressed gene (SGEG) has been found to be involved in the cyst shell formation. Lacking SGEG protein (by RNA interference) caused the cyst shell to become translucent and the chorion layer of the shell to become less compact and pultaceous and to show a marked decrease of iron composition within the shell. The RNA interference induced defective diapause cysts with a totally compromised resistibility to UV irradiation, extremely large temperature differences, osmotic pressure, dryness, and organic solvent stresses. In contrast, the natural cyst would provide adequate protection from all such factors. SGEG contains a 345-bp open reading frame, and its consequentially translated peptide consists of a 33-amino acid residue putative signal peptide and an 81-amino acid residue mature peptide. The results of Northern blotting and in situ hybridization indicate that the gene is specifically expressed in the cells of shell glands during the period of diapause cyst formation of oviparous Artemia. This investigation adds strong insight into the mechanism of cyst shell formation of Artemia and may be applicable to other areas of research in extremophile biology.
Collapse
Affiliation(s)
- Yu-Lei Liu
- From the Institute of Cell Biology and Genetics, Hangzhou, Zhejiang 310058, China
| | - Yang Zhao
- From the Institute of Cell Biology and Genetics, Hangzhou, Zhejiang 310058, China
| | - Zhong-Min Dai
- From the Institute of Cell Biology and Genetics, Hangzhou, Zhejiang 310058, China
| | - Han-Min Chen
- Equipment and Technology Service Platform, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei-Jun Yang
- From the Institute of Cell Biology and Genetics, Hangzhou, Zhejiang 310058, China; State Conservation Center for Gene Resources of Wildlife and the Key Laboratory of Conservation Genetics and Reproductive Biology for Wild Animals of the Ministry of Education, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
van Grinsven KWA, van Hellemond JJ, Tielens AGM. Acetate:succinate CoA-transferase in the anaerobic mitochondria of Fasciola hepatica. Mol Biochem Parasitol 2008; 164:74-9. [PMID: 19103231 DOI: 10.1016/j.molbiopara.2008.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 11/12/2008] [Accepted: 11/20/2008] [Indexed: 11/16/2022]
Abstract
Fasciola hepatica contains anaerobically functioning mitochondria that produce acetate and propionate, the main endproducts excreted by this parasite. The final reactions in the pathways leading to these endproducts are performed by acetate:succinate CoA-transferase (ASCT) and propionate:succinate CoA-transferase (PSCT), respectively. The enzymes catalysing these essential reactions in anaerobic mitochondria are still not characterized, nor are the corresponding genes identified. Here we describe the identification of the gene that codes for the F. hepatica ASCT. The F. hepatica gene was heterologously expressed and studies on the corresponding enzyme activity showed that the enzyme is indeed a transferase and uses a ping-pong bi-bi reaction mechanism, like most other known CoA-transferases. This F. hepatica CoA-transferase was shown to be a true transferase and not a hydrolase, as it needs an acceptor for optimal activity. Our studies demonstrated that the F. hepatica ASCT can use other CoA-acceptors than succinate, such as propionate, acetate and butyrate, and is in fact a short-chain acyl-CoA-transferase. We further showed that this F. hepatica CoA-transferase can also catalyze the PSCT reaction, which is responsible for the production of propionate. Analysis of the amino acid sequence of F. hepatica clearly indicated the presence of a mitochondrial targeting sequence, and in CHO cells the enzyme is indeed present in the mitochondrial fraction. F. hepatica ASCT is the first ASCT identified in anaerobic mitochondria. It is homologous to the hydrogenosomal ASCT we earlier identified in Trichomonas vaginalis, but not to the ASCT present in the aerobic mitochondria of Trypanosoma brucei.
Collapse
Affiliation(s)
- Koen W A van Grinsven
- Department of Biochemistry, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
7
|
ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem J 2008; 411:605-11. [DOI: 10.1042/bj20071472] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the α-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.
Collapse
|
8
|
van Grinsven KWA, Rosnowsky S, van Weelden SWH, Pütz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AGM, Henze K. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 2007; 283:1411-1418. [PMID: 18024431 DOI: 10.1074/jbc.m702528200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial eukaryotes such as Trichomonas vaginalis, no acetate producing enzyme has ever been identified in these organelles. Acetate production is the last unidentified enzymatic reaction of hydrogenosomal carbohydrate metabolism. We identified a gene encoding an enzyme for acetate production in the genome of the hydrogenosome-containing protozoan parasite T. vaginalis. This gene shows high similarity to Saccharomyces cerevisiae acetyl-CoA hydrolase and Clostridium kluyveri succinyl-CoA:CoA-transferase. Here we demonstrate that this protein is expressed and is present in the hydrogenosomes where it functions as the T. vaginalis acetate:succinate CoA-transferase (TvASCT). Heterologous expression of TvASCT in CHO cells resulted in the expression of an active ASCT. Furthermore, homologous overexpression of the TvASCT gene in T. vaginalis resulted in an equivalent increase in ASCT activity. It was shown that the CoA transferase activity is succinate-dependent. These results demonstrate that this acetyl-CoA hydrolase/transferase homolog functions as the hydrogenosomal ASCT of T. vaginalis. This is the first hydrogenosomal acetate-producing enzyme to be identified. Interestingly, TvASCT does not share any similarity with the mitochondrial ASCT from Trypanosoma brucei, the only other eukaryotic succinate-dependent acetyl-CoA-transferase identified so far. The trichomonad enzyme clearly belongs to a distinct class of acetate:succinate CoA-transferases. Apparently, two completely different enzymes for succinate-dependent acetate production have evolved independently in ATP-generating organelles.
Collapse
Affiliation(s)
- Koen W A van Grinsven
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Silke Rosnowsky
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Susanne W H van Weelden
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Simone Pütz
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Mark van der Giezen
- Centre for Eukaryotic Evolutionary Microbiology, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - William Martin
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; Department of Medical Microbiology & Infectious Diseases, ErasmusMC University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands; Department of Medical Microbiology & Infectious Diseases, ErasmusMC University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Katrin Henze
- Institute of Botany III, Heinrich Heine University, Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
O'Connell PA, Pinto DM, Chisholm KA, MacRae TH. Characterization of the microtubule proteome during post-diapause development of Artemia franciscana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:920-8. [PMID: 16631421 DOI: 10.1016/j.bbapap.2006.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 02/23/2006] [Accepted: 03/13/2006] [Indexed: 01/02/2023]
Abstract
The microtubule proteome encompasses tubulin and a diverse group of proteins which associate with tubulin upon microtubule formation. These proteins either determine microtubule organization and function or their activity is influenced by microtubule association. To characterize the microtubule proteome in Artemia franciscana, tubulin assembly was induced with taxol in vitro after 0 and 12 h of post-diapause development. Proteins obtained by extraction of microtubules with 0.5 M NaCl were electrophoresed in two-dimensional gels and analyzed by mass spectrometry. Fifty-five proteins were identified with 10 of these occurring at both developmental stages, and multiple isoforms were observed for some proteins of the Artemia proteome. Their functions include roles in membrane transport, metabolism, chaperoning and protein synthesis, thus reflecting physiological properties of encysted Artemia such as stress resistance and the ability to rapidly initiate post-diapause development. For example, chaperones may protect tubulin during encystment and facilitate folding in metabolically active embryos. Additionally, the interaction of metabolic enzymes with microtubules funnels reaction intermediates, potentially enhancing efficiency within biochemical processes. This study represents the first systematic characterization of a crustacean microtubule proteome. Although it is difficult to be certain that all protein associations documented herein occur in vivo, the results suggest how protein-protein interactions contribute to cytoplasmic organization while implying how Artemia embryos resist stress and remain capable of development once diapause terminates.
Collapse
Affiliation(s)
- Paul A O'Connell
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | | | |
Collapse
|