1
|
Lian K, Furulund BMN, Tveita AA, Haugen P, Johansen SD. Mobile group I introns at nuclear rDNA position L2066 harbor sense and antisense homing endonuclease genes intervened by spliceosomal introns. Mob DNA 2022; 13:23. [PMID: 36209098 PMCID: PMC9548176 DOI: 10.1186/s13100-022-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed. To address this gap of knowledge we analyzed nuclear L2066 group I introns from myxomycetes and ascomycetes. Results A total of 34 introns were investigated, including two identified mobile-type introns in myxomycetes with HEGs oriented in sense or antisense directions. Intriguingly, both HEGs are interrupted by spliceosomal introns. The intron in Didymium squamulosum, which harbors an antisense oriented HEG, was investigated in more detail. The group I intron RNA self-splices in vitro, thus generating ligated exons and full-length intron circles. The intron HEG is expressed in vivo in Didymium cells, which involves removal of a 47-nt spliceosomal intron (I-47) and 3′ polyadenylation of the mRNA. The D. squamulosum HEG (lacking the I-47 intron) was over-expressed in E. coli, and the corresponding protein was purified and shown to confer endonuclease activity. The homing endonuclease was shown to cleave an intron-lacking DNA and to produce a pentanucleotide 3′ overhang at the intron insertion site. Conclusions The L2066 family of nuclear group I introns all belong to the group IE subclass. The D. squamulosum L2066 intron contains major hallmarks of a true mobile group I intron by encoding a His-Cys homing endonuclease that generates a double-strand break at the DNA insertion site. We propose a potential model to explain how an antisense HEG becomes expressed from a nuclear ribosomal DNA locus. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00280-4.
Collapse
Affiliation(s)
- Kjersti Lian
- Nofima AS, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Betty M N Furulund
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Anders A Tveita
- Medical Department, Bærum Hospital, Vestre Viken Hospital Trulst, Drammen, Norway
| | - Peik Haugen
- Department of Chemistry and Center for Bioinformatics, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Steinar D Johansen
- Genomics division, Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
2
|
Structural Organization of S516 Group I Introns in Myxomycetes. Genes (Basel) 2022; 13:genes13060944. [PMID: 35741706 PMCID: PMC9223047 DOI: 10.3390/genes13060944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns. We analyzed and compared 75 group I introns at position 516 in the small subunit ribosomal DNA from diverse and distantly related myxomycete taxa. A consensus secondary structure revealed a conserved group IC1 ribozyme core, but with a surprising RNA sequence complexity in the peripheral regions. Five S516 group I introns possess a twintron organization, where a His-Cys homing endonuclease gene insertion was interrupted by a small spliceosomal intron. Eleven S516 introns contained direct repeat arrays with varying lengths of the repeated motif, a varying copy number, and different structural organizations. Phylogenetic analyses of S516 introns and the corresponding host genes revealed a complex inheritance pattern, with both vertical and horizontal transfers. Finally, we reconstructed the evolutionary history of S516 nucleolar group I introns from insertion of mobile-type introns at unoccupied cognate sites, through homing endonuclease gene degradation and loss, and finally to the complete loss of introns. We conclude that myxomycete S516 introns represent a family of genetic elements with surprisingly dynamic structures despite a common function in RNA self-splicing.
Collapse
|
3
|
A Phylogenetic Approach to Structural Variation in Organization of Nuclear Group I Introns and Their Ribozymes. Noncoding RNA 2021; 7:ncrna7030043. [PMID: 34449660 PMCID: PMC8395846 DOI: 10.3390/ncrna7030043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/22/2023] Open
Abstract
Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete Mucilago crustacea was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene. We collected, analyzed, and compared 72 S1389 group IC1 introns representing diverse myxomycete taxa. The consensus secondary structure revealed a conserved ribozyme core, but with surprising sequence variations in the guanosine binding site in segment P7. Some S1389 introns harbored large extension sequences in the peripheral region of segment P9 containing direct repeat arrays. These repeats contained up to 52 copies of a putative internal guide sequence motif. Other S1389 introns harbored homing endonuclease genes in segment P1 encoding His-Cys proteins. Homing endonuclease genes were further interrupted by small spliceosomal introns that have to be removed in order to generate the open reading frames. Phylogenetic analyses of S1389 intron and host gene indicated both vertical and horizontal intron transfer during evolution, and revealed sporadic appearances of direct repeats, homing endonuclease genes, and guanosine binding site variants among the myxomycete taxa.
Collapse
|
4
|
Analysis of small and large subunit rDNA introns from several ectomycorrhizal fungi species. PLoS One 2021; 16:e0245714. [PMID: 33720962 PMCID: PMC7959364 DOI: 10.1371/journal.pone.0245714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
The small (18S) and large (28S) nuclear ribosomal DNA (rDNA) introns have been researched and sequenced in a variety of ectomycorrhizal fungal taxa in this study, it is found that both 18S and 28S rDNA would contain introns and display some degree variation in size, nucleotide sequences and insertion positions within the same fungi species (Meliniomyces). Under investigations among the tested isolates, 18S rDNA has four sites for intron insertions, 28S rDNA has two sites for intron insertions. Both 18S and 28S rDNA introns among the tested isolates belong to group I introns with a set of secondary structure elements designated P1-P10 helics and loops. We found a 12 nt nucleotide sequences TACCACAGGGAT at site 2 in the 3'-end of 28S rDNA, site 2 introns just insert the upstream or the downstream of the12 nt nucleotide sequences. Afters sequence analysis of all 18S and 28S rDNA introns from tested isolates, three high conserved regions around 30 nt nucleotides (conserved 1, conserved 2, conserved 3) and identical nucleotides can be found. Conserved 1, conserved 2 and conserved 3 regions have high GC content, GC percentage is almost more than 60%. From our results, it seems that the more convenient host sites, intron sequences and secondary structures, or isolates for 18S and 28S rDNA intron insertion and deletion, the more popular they are. No matter 18S rDNA introns or 18S rDNA introns among tested isolates, complementary base pairing at the splicing sites in P1-IGS-P10 tertiary helix around 5'-end introns and exons were weak.
Collapse
|
5
|
Sex or no sex? Group I introns and independent marker genes reveal the existence of three sexual but reproductively isolated biospecies in Trichia varia (Myxomycetes). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0230-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Tang Y, Nielsen H, Masquida B, Gardner PP, Johansen SD. Molecular characterization of a new member of the lariat capping twin-ribozyme introns. Mob DNA 2014; 5:25. [PMID: 25342998 PMCID: PMC4167309 DOI: 10.1186/1759-8753-5-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. RESULTS We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2',5' lariat cap at the 5' end of the homing endonuclease mRNA, and thus contributes to intron mobility. CONCLUSIONS The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component.
Collapse
Affiliation(s)
- Yunjia Tang
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Masquida
- Génétique Moléculaire, Génomique, Microbiologie, IPCB, Université de Strasbourg, CNRS, Strasbourg, France
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Steinar D Johansen
- RNA and Molecular Pathology group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
7
|
The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 2011; 162:607-18. [PMID: 21392573 DOI: 10.1016/j.resmic.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/29/2011] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Collapse
|
8
|
Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010; 67:727-48. [PMID: 19915993 PMCID: PMC11115532 DOI: 10.1007/s00018-009-0188-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.
Collapse
Affiliation(s)
- Maria J. Marcaida
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Inés G. Muñoz
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Francisco J. Blanco
- Ikerbasque Professor Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Vizcaya, 48160 Derio, Spain
| | - Jesús Prieto
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
9
|
Wikmark OG, Einvik C, De Jonckheere JF, Johansen SD. Short-term sequence evolution and vertical inheritance of the Naegleria twin-ribozyme group I intron. BMC Evol Biol 2006; 6:39. [PMID: 16670006 PMCID: PMC1464144 DOI: 10.1186/1471-2148-6-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 05/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG). NaGIR2 is responsible for intron excision, exon ligation, and full-length intron RNA circularization, reactions typical for nuclear group I intron ribozymes. NaGIR1, however, is essential for NaHEG expression by generating the 5' end of the homing endonuclease messenger RNA. Interestingly, this unusual class of ribozyme adds a lariat-cap at the mRNA. RESULTS To elucidate the evolutionary history of the Nae.S516 twin-ribozyme introns we have analyzed 13 natural variants present in distinct Naegleria isolates. Structural variabilities were noted within both the ribozyme domains and provide strong comparative support to the intron secondary structure. One of the introns, present in N. martinezi NG872, contains hallmarks of a degenerated NaHEG. Phylogenetic analyses performed on separate data sets representing NaGIR1, NaGIR2, NaHEG, and ITS1-5.8S-ITS2 ribosomal DNA are consistent with an overall vertical inheritance pattern of the intron within the Naegleria genus. CONCLUSION The Nae.S516 twin-ribozyme intron was gained early in the Naegleria evolution with subsequent vertical inheritance. The intron was lost in the majority of isolates (70%), leaving a widespread but scattered distribution pattern. Why the apparent asexual Naegleria amoebae harbors active intron homing endonucleases, dependent on sexual reproduction for its function, remains a puzzle.
Collapse
Affiliation(s)
- Odd-Gunnar Wikmark
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | - Christer Einvik
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Pediatrics, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Johan F De Jonckheere
- Protozoology Laboratory, Scientific Institute Public Health, B1050 Brussels, Belgium
| | - Steinar D Johansen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
- Department of Fisheries and Natural Sciences, Bodø University College, N-8049 Bodø, Norway
| |
Collapse
|
10
|
Haugen P, Wikmark OG, Vader A, Coucheron DH, Sjøttem E, Johansen SD. The recent transfer of a homing endonuclease gene. Nucleic Acids Res 2005; 33:2734-41. [PMID: 15891115 PMCID: PMC1110740 DOI: 10.1093/nar/gki564] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.
Collapse
Affiliation(s)
| | | | | | | | | | - Steinar D. Johansen
- To whom correspondence should be addressed. Tel: +47 77 64 53 67; Fax: +47 77 64 53 50;
| |
Collapse
|
11
|
Haugen P, Coucheron DH, Rønning SB, Haugli K, Johansen S. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes. J Eukaryot Microbiol 2004; 50:283-92. [PMID: 15132172 DOI: 10.1111/j.1550-7408.2003.tb00135.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.
Collapse
Affiliation(s)
- Peik Haugen
- Department of Molecular Biotechnology, RNA Research Group, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
12
|
Abstract
The catalytic mechanisms of type II restriction endonucleases and homing endonucleases are discussed and compared. Brief reviews of the chemistry of phosphoryl transfers and canonical one-metal and two-metal endonucleolytic mechanisms are provided along with possible future directions in the study of endonuclease active sites. The discussion of type II restriction endonucleases is comprised of a description of the general architecture of the canonical active site structural motif followed by more in-depth examples of one- and two-metal mechanisms. The homing endonuclease section is comprised of four sections describing what is known regarding the cleavage mechanisms of the four group I intron homing endonuclease families: LAGLIDADG, His-Cys box, H-N-H, and GIY-YIG.
Collapse
Affiliation(s)
- Eric A Galburt
- Fred Hutchinson Cancer Research Center and Graduate Program in Biomolecular Structure and Design, University of Washington, 1100 Fairview Avenue North, A3-023, Seattle, Washington 98109, USA
| | | |
Collapse
|
13
|
Johansen S, Einvik C, Nielsen H. DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role. Biochimie 2002; 84:905-12. [PMID: 12458083 DOI: 10.1016/s0300-9084(02)01443-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The group I-like ribozyme GIR1 is a unique example of a naturally occurring ribozyme with an evolved biological function. GIR1 generates the 5'-end of a nucleolar encoded messenger RNA involved in intron mobility. GIR1 is found as a cis-cleaving ribozyme within two very different rDNA group I introns (twin-ribozyme introns) in distantly related organisms. The Didymium GIR1 (DiGIR1) and Naegleria GIR1 (NaGIR1) share fundamental features in structural organization and reactivity, and display significant differences when compared to the related group I splicing ribozymes. GIR1 lacks the characteristic P1 segment present in all group I splicing ribozymes, it has a novel core organization, and it catalyses two site-specific hydrolytic cleavages rather than splicing. DiGIR1 and NaGIR1 appear to have originated from eubacterial group I introns in order to fulfil a common biological challenge: the expression of a protein encoding gene in a nucleolar context.
Collapse
Affiliation(s)
- Steinar Johansen
- RNA Research Group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, 037 Tromsø, Norway.
| | | | | |
Collapse
|
14
|
Haugen P, De Jonckheere JF, Johansen S. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1641-9. [PMID: 11895434 DOI: 10.1046/j.1432-1327.2002.02802.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two group I introns Nae.L1926 and Nmo.L2563, found at two different sites in nuclear LSU rRNA genes of Naegleria amoebo-flagellates, have been characterized in vitro. Their structural organization is related to that of the mobile Physarum intron Ppo.L1925 (PpLSU3) with ORFs extending the L1-loop of a typical group IC1 ribozyme. Nae.L1926, Nmo.L2563 and Ppo.L1925 RNAs all self-splice in vitro, generating ligated exons and full-length intron circles as well as internal processed excised intron RNAs. Formation of full-length intron circles is found to be a general feature in RNA processing of ORF-containing nuclear group I introns. Both Naegleria LSU rDNA introns contain a conserved polyadenylation signal at exactly the same position in the 3' end of the ORFs close to the internal processing sites, indicating an RNA polymerase II-like expression pathway of intron proteins in vivo. The intron proteins I-NaeI and I-NmoI encoded by Nae.L1926 and Nmo.L2563, respectively, correspond to His-Cys homing endonucleases of 148 and 175 amino acids. I-NaeI contains an additional sequence motif homologous to the unusual DNA binding motif of three antiparallel beta sheets found in the I-PpoI endonuclease, the product of the Ppo.L1925 intron ORF.
Collapse
Affiliation(s)
- Peik Haugen
- RNA Research group, Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
15
|
Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29:3757-74. [PMID: 11557808 PMCID: PMC55915 DOI: 10.1093/nar/29.18.3757] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Homing endonucleases confer mobility to their host intervening sequence, either an intron or intein, by catalyzing a highly specific double-strand break in a cognate allele lacking the intervening sequence. These proteins are characterized by their ability to bind long DNA target sites (14-40 bp) and their tolerance of minor sequence changes in these sites. A wealth of biochemical and structural data has been generated for these enzymes over the past few years. Herein we review our current understanding of homing endonucleases, including their diversity and evolution, DNA-binding and catalytic mechanisms, and attempts to engineer them to bind novel DNA substrates.
Collapse
Affiliation(s)
- B S Chevalier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center and Graduate Program in Molecular and Cell Biology, University of Washington, 1100 Fairview Avenue North A3-023, Seattle, WA 98109, USA
| | | |
Collapse
|
16
|
Elde M, Willassen NP, Johansen S. Functional characterization of isoschizomeric His-Cys box homing endonucleases from Naegleria. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7257-66. [PMID: 11106439 DOI: 10.1046/j.1432-1327.2000.01862.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species within the amoeboflagellate genus Naegleria harbor an optional ORF containing group I introns in their nuclear small subunit ribosomal DNA. The different ORFs encode homing endonucleases with 65 to 95% identity at the amino-acid level. I-NjaI, I-NanI and I-NitI, from introns in Naegleria jamiesoni, N. andersoni and N. italica, respectively, were analyzed in more detail and found to be isoschizomeric endonucleases that recognize and cleave an approximal 19-bp partially symmetrical sequence, creating a pentanucleotide 3' overhang upon cleavage. The optimal conditions for cleavage activity with respect to temperature, pH, salt and divalent metal ions were investigated. The optimal cleavage temperature for all three endonucleases was found to be 37 degrees C and the activity was dependent on the concentration of NaCl with an optimum at 200 mM. Divalent metal ions, primarily Mg2+, are essential for Naegleria endonuclease activity. Whereas both Mn2+ and Ca2+ could substitute for Mg2+, but with a slower cleavage rate, Zn2+ was unable to support cleavage. Interestingly, the pH dependence of DNA cleavage was found to vary significantly between the I-NitI and I-NjaI/I-NanI endonucleases with optimal pH values at 6.5 and 9, respectively. Site-directed mutagenesis of conserved I-NjaI residues strongly supports the hypothesis that Naegleria homing endonucleases share a similar zinc-binding structure and active site with the His-Cys box homing endonuclease I-PpoI.
Collapse
Affiliation(s)
- M Elde
- Department of Molecular Biotechnology, Institute of Medical Biology, University of Tromso, Norway
| | | | | |
Collapse
|
17
|
Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ, Stoddard BL. Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. J Mol Biol 2000; 300:877-87. [PMID: 10891275 DOI: 10.1006/jmbi.2000.3874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.
Collapse
Affiliation(s)
- E A Galburt
- Fred Hutchinson Cancer Research Center and the Graduate Programs in Molecular and Cell Biology and Biomolecular Structure and Design, 1100 Fairview Ave. N. A3-023, Seattle, WA, 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin J, Vogt VM. Functional alpha-fragment of beta-galactosidase can be expressed from the mobile group I intron PpLSU3 embedded in yeast pre-ribosomal RNA derived from the chromosomal rDNA locus. Nucleic Acids Res 2000; 28:1428-38. [PMID: 10684939 PMCID: PMC111048 DOI: 10.1093/nar/28.6.1428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 01/11/2000] [Accepted: 01/21/2000] [Indexed: 11/14/2022] Open
Abstract
PpLSU3, a mobile group I intron found in the ribo-somal RNA genes of Physarum polycephalum, encodes the I-PpoI homing endonuclease. This enzyme represents one of the rare cases in nature where a protein is expressed from an RNA polymerase I transcript. Our previous results showed that the full length intron, but not a further processed species, is the messenger for I-PpoI, implying a role of the untranslated region (UTR) in gene expression. To study the function of the 3'-UTR in expression of the endonuclease and in splicing of the intron, we replaced the I-PpoI gene in PpLSU3 with the gene for the alpha-fragment of Escherichia coli beta-galactosidase, and then integrated this chimeric intron into all the chromosomal rDNA repeats of yeast. The resulting cells synthesized functional alpha-fragment, as evidenced by a complementation assay analogous to that used in E.coli. The beta-galactosidase activity thus provides an unusual and potentially valuable readout for Pol I transcription from chromosomal rDNA. This is the first example in which a eucaryotic homing endonuclease gene has been successfully replaced by a heterologous gene. Using deletion mutagenesis and a novel randomization approach with the alpha-fragment as a reporter, we found that a small segment of the 3'-UTR dramatically influences both splicing and protein expression.
Collapse
Affiliation(s)
- J Lin
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
19
|
Vader A, Nielsen H, Johansen S. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron. EMBO J 1999; 18:1003-13. [PMID: 10022842 PMCID: PMC1171192 DOI: 10.1093/emboj/18.4.1003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.
Collapse
Affiliation(s)
- A Vader
- Department of Molecular Cell Biology, Institute of Medical Biology, University of Tromso, N-9037 Tromso, Norway.
| | | | | |
Collapse
|