1
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
2
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
3
|
Peptide Antagonists for P-selectin Discriminate between Sulfatide-Dependent Platelet Aggregation and PSGL-1-Mediated Cell Adhesion. J Clin Med 2019; 8:jcm8081266. [PMID: 31434351 PMCID: PMC6722823 DOI: 10.3390/jcm8081266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Membrane-exposed sulfatides are proposed to contribute to P-selectin-dependent platelet aggregation. Here, we demonstrated that P-selectin-mediated platelet aggregation on a collagen-coated surface under flow indeed depended on sulfatides and that this interaction differed considerably from the interaction of P-selectin with P-selectin Glycoprotein Ligand-1 (PSGL-1), which underlies leukocyte-endothelium adhesion. METHODS AND RESULTS Upon platelet activation, sulfatides were translocated to the platelet surface to form focal hot-spots. Interestingly, P-selectin was observed to exclusively interact with liposomes with a sulfatide density higher than 21% (w/w), indicating that the binding profile of P-selectin for sulfatide-rich liposomes was dependent on sulfatide density. Sulfatide-liposome binding to P-selectin and sulfatide/P-selectin-dependent platelet aggregation was blunted by peptide antagonists, carrying the EWVDV motif within N-terminal extensions, such as CDVEWVDVSC (half maximal inhibitory concentration IC50 = 0.2 μM), but not by the EWVDV core motif itself (IC50 > 1000 μM), albeit both being equally potent inhibitors of PSGL-1/P-selectin interaction (IC50= 7-12 μM). CONCLUSIONS Our data suggest that the sulfatide/P-selectin interaction implicates multiple binding pockets, which only partly overlap with that of PSGL-1. These observations open ways to selectively interfere with sulfatide/P-selectin-dependent platelet aggregation without affecting PSGL-1-dependent cell adhesion.
Collapse
|
4
|
Takahashi T, Ito K, Fukushima K, Takaguchi M, Hayakawa T, Suzuki Y, Suzuki T. Sulfatide negatively regulates the fusion process of human parainfluenza virus type 3. J Biochem 2012; 152:373-80. [DOI: 10.1093/jb/mvs080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Polyanionic drugs and viral oncogenesis: a novel approach to control infection, tumor-associated inflammation and angiogenesis. Molecules 2008; 13:2758-85. [PMID: 19002078 PMCID: PMC6245429 DOI: 10.3390/molecules13112758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 01/01/2023] Open
Abstract
Polyanionic macromolecules are extremely abundant both in the extracellular environment and inside the cell, where they are readily accessible to many proteins for interactions that play a variety of biological roles. Among polyanions, heparin, heparan sulfate proteoglycans (HSPGs) and glycosphingolipids (GSLs) are widely distributed in biological fluids, at the cell membrane and inside the cell, where they are implicated in several physiological and/or pathological processes such as infectious diseases, angiogenesis and tumor growth. At a molecular level, these processes are mainly mediated by microbial proteins, cytokines and receptors that exert their functions by binding to HSPGs and/or GSLs, suggesting the possibility to use polyanionic antagonists as efficient drugs for the treatment of infectious diseases and cancer. Polysulfated (PS) or polysulfonated (PSN) compounds are a heterogeneous group of natural, semi-synthetic or synthetic molecules whose prototypes are heparin and suramin. Different structural features confer to PS/PSN compounds the capacity to bind and inhibit the biological activities of those same heparin-binding proteins implicated in infectious diseases and cancer. In this review we will discuss the state of the art and the possible future development of polyanionic drugs in the treatment of infectious diseases and cancer.
Collapse
|
6
|
Abstract
Sulfatide is abundantly expressed in various mammalian organs, including the intestines and trachea, in which influenza A viruses (IAVs) replicate. However, the function of sulfatide in IAV infection remains unknown. Sulfatide is synthesized by two transferases, ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST), and is degraded by arylsulfatase A (ASA). In this study, we demonstrated that sulfatide enhanced IAV replication through efficient translocation of the newly synthesized IAV nucleoprotein (NP) from the nucleus to the cytoplasm, by using genetically produced cells in which sulfatide expression was down-regulated by RNA interference against CST mRNA or overexpression of the ASA gene and in which sulfatide expression was up-regulated by overexpression of both the CST and CGT genes. Treatment of IAV-infected cells with an antisulfatide monoclonal antibody (MAb) or an anti-hemagglutinin (HA) MAb, which blocks the binding of IAV and sulfatide, resulted in a significant reduction in IAV replication and accumulation of the viral NP in the nucleus. Furthermore, antisulfatide MAb protected mice against lethal challenge with pathogenic influenza A/WSN/33 (H1N1) virus. These results indicate that association of sulfatide with HA delivered to the cell surface induces translocation of the newly synthesized IAV ribonucleoprotein complexes from the nucleus to the cytoplasm. Our findings provide new insights into IAV replication and suggest new therapeutic strategies.
Collapse
|
7
|
Landoni M, Duschak VG, Peres VJ, Nonami H, Erra-Balsells R, Katzin AM, Couto AS. Plasmodium falciparum biosynthesizes sulfoglycosphingolipids. Mol Biochem Parasitol 2007; 154:22-9. [PMID: 17498820 DOI: 10.1016/j.molbiopara.2007.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/09/2007] [Accepted: 03/30/2007] [Indexed: 11/24/2022]
Abstract
Sulfated glycosphingolipids are present on the surface of a variety of cells. They are active participants in adhesion processes in many systems and appear to be involved in the regulation of cell proliferation, differentiation and other developmental cellular events. However, the body of knowledge about synthesis, structure, and function of glycolipids in parasitic protozoa is very limited so far. In this work, we show by metabolic incorporation of [(14)C]palmitic acid, [(14)C]glucose and Na(2)(35)SO(4) that sulfoglycosphingolipids are biosynthesized in the three intraerythrocytic stages of Plasmodium falciparum. After saponification, purification of the labelled acidic components was achieved and two components named SPf1 and SPf2 were characterized. Chemical degradations and TLC analysis pointed out to sulfolipidic structures. Analysis by UV-MALDI-TOF mass spectrometry in the negative ion mode using nor-harmane as matrix showed for SPf2 a structure consisting in a disulfated hexose linked to a 20:1 sphingosine acylated with C18:0 fatty acid. Interestingly, parasite treatment with low concentrations of d,l-threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) caused an arrest on parasite development associated to the inhibition of sulfoglycolipid biosynthesis. Taking into account that sulfoglycolipidic structures are currently involved in adhesion processes, our findings open the possibility to study the participation of this type of structures in the described aggregation phenomena in severe malaria and may contribute to clarify the pathogenesis of the disease. This report shows for the first time the synthesis of sulfoglycolipids in Apicomplexa.
Collapse
Affiliation(s)
- Malena Landoni
- CIHIDECAR, Departamento de Química Orgánica, Pabellón II, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | | | | | | | | | | | | |
Collapse
|
8
|
Rusnati M, Presta M. Extracellular angiogenic growth factor interactions: an angiogenesis interactome survey. ACTA ACUST UNITED AC 2006; 13:93-111. [PMID: 16728328 DOI: 10.1080/10623320600698011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Angiogenesis plays a key role in various physiological and pathological processes, including inflammation and tumor growth. Numerous angiogenic growth factors (AGFs) have been identified. Usually, the angiogenic process is assumed to represent the outcome of a straightforward interaction of AGFs with specific signalling receptors of the endothelial cell (EC) surface. Actually, the mechanisms by which AGFs induce neovascularization are much more complex. Indeed, angiogenesis is the result of the simultaneous actions of various AGFs and angiogenesis modulators; multiple EC surface receptors with different structure and biological properties are engaged by AGFs to exert a full angiogenic response; AGFs bind a variety of free and immobilized proteins, polysaccharides, and complex lipids of the extracellular milieu that affect AGF integrity, stability, and bioavailability; some of the AGF-binding molecules interact also with AGF receptors. In this review the authors summarize literature data and discuss the current knowledge about the extracellular molecules able to interact with AGFs, thus representing possible key regulators of the angiogenesis process and targets/templates for the development of novel antiangiogenic drugs. This work represents an attempt to highlight common theme in the AGF interactome that occurs at the extracellular level during neovascularization.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Biomedical Sciences and Biotechnology, Unit of General Pathology and Immunology, School of Medicine, University of Brescia, Italy
| | | |
Collapse
|
9
|
Said EA, Courty J, Svab J, Delbé J, Krust B, Hovanessian AG. Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J 2005; 272:4646-59. [PMID: 16156786 DOI: 10.1111/j.1742-4658.2005.04870.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growth factor pleiotrophin (PTN) has been reported to bind heparan sulfate and nucleolin, two components of the cell surface implicated in the attachment of HIV-1 particles to cells. Here we show that PTN inhibits HIV-1 infection by its capacity to inhibit HIV-1 particle attachment to the surface of permissive cells. The beta-sheet domains of PTN appear to be implicated in this inhibitory effect on the HIV infection, in particular the domain containing amino acids 60-110. PTN binding to the cell surface is mediated by high and low affinity binding sites. Other inhibitors of HIV attachment known to bind specifically surface expressed nucleolin, such as the pseudopeptide HB-19 and the cytokine midkine prevent the binding of PTN to its low affinity-binding site. Confocal immunofluorescence laser microscopy revealed that the cross-linking of surface-bound PTN with a specific antibody results in the clustering of cell surface-expressed nucleolin and the colocalization of both PTN and nucleolin signals. Following its binding to surface-nucleolin, PTN is internalized by a temperature sensitive mechanism, a process which is inhibited by HB-19 and is independent of heparan and chondroitin sulfate proteoglycans. Nevertheless, proteoglycans might play a role in the concentration of PTN on the cell surface for a more efficient interaction with nucleolin. Our results demonstrate for the first time that PTN inhibits HIV infection and suggest that the cell surface-expressed nucleolin is a low affinity receptor for PTN binding to cells and it is also implicated in PTN entry into cells by an active process.
Collapse
Affiliation(s)
- Elias A Said
- UPR 2228 CNRS, UFR Biomédicale des Saints-Pères, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Suzuki T, Takahashi T, Nishinaka D, Murakami M, Fujii S, Hidari KIPJ, Miyamoto D, Li YT, Suzuki Y. Inhibition of influenza A virus sialidase activity by sulfatide. FEBS Lett 2003; 553:355-9. [PMID: 14572650 DOI: 10.1016/s0014-5793(03)01045-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfatide, which binds to influenza A viruses and prevents the viral infection, was found to inhibit the sialidase activities of influenza A viruses in a pH-dependent manner. The kinetic parameters of the effect of sulfatide on the sialidase activities of human influenza A viruses using fluorometric assay indicated that sulfatide was a powerful and non-competitive type inhibitor in low-pH conditions.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences, 422-8526 Shizuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maeda N, He J, Yajima Y, Mikami T, Sugahara K, Yabe T. Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J Biol Chem 2003; 278:35805-11. [PMID: 12840014 DOI: 10.1074/jbc.m305530200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PTP zeta is a receptor-type protein-tyrosine phosphatase that is synthesized as a chondroitin sulfate proteoglycan and uses pleiotrophin as a ligand. The chondroitin sulfate portion of this receptor is essential for high affinity binding to pleiotrophin. Here, we purified phosphacan, which corresponds to the extracellular domain of PTP zeta, from postnatal day 7 (P7) and P12 rat cerebral cortex (PG-P7 and PG-P12, respectively) and from P20 rat whole brain (PG-P20). The chondroitin sulfate of these preparations displayed immunologically and compositionally different structures. In particular, only PG-P20 reacted with the monoclonal antibody MO-225, which recognizes chondroitin sulfate containing the GlcA(2S)beta 1-3GalNAc(6S) disaccharide unit (D unit). Analysis of the chondroitinase digestion products revealed that GlcA beta 1-3GalNAc(4S) disaccharide unit (A unit) was the major component in these preparations and that PG-P20 contained 1.3% D unit, which was not detected in PG-P7 and PG-P12. Interaction analysis using a surface plasmon resonance biosensor indicated that PG-P20 had approximately 5-fold stronger affinity for pleiotrophin (dissociation constant (KD) = 0.14 nM) than PG-P7 and PG-P12, although all these preparations showed similar low affinity binding to pleiotrophin after chondroitinase ABC digestion (KD = 1.4 approximately 1.6 nM). We also found that shark cartilage chondroitin sulfate D containing approximately 20% D unit bound to pleiotrophin with moderate affinity (KD = 2.7 nM), whereas whale cartilage chondroitin sulfate A showed no binding to this growth factor. These results suggest that variation of chondroitin sulfate plays important roles in the regulation of signal transduction in the brain.
Collapse
Affiliation(s)
- Nobuaki Maeda
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526.
| | | | | | | | | | | |
Collapse
|
12
|
Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG. The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem 2002; 277:37492-502. [PMID: 12147681 DOI: 10.1074/jbc.m201194200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth factor midkine (MK) is a cytokine that inhibits the attachment of human immunodeficiency virus particles by a mechanism similar to the nucleolin binding HB-19 pseudopeptide. Here we show that the binding of MK to cells occurs specifically at a high and a low affinity binding site. HB-19 prevents the binding of MK to the low affinity binding site only. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicated that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, is the domain that binds MK. The specific binding of MK to cells is independent of heparan sulfate and chondroitin sulfate expression. After binding to cells, MK enters cells by an active process. Interestingly, the cross-linking of surface-bound MK with a specific antibody results in the clustering of surface nucleolin along with glycosylphosphatidylinositol-linked proteins CD90 and CD59, thus, pointing out that MK binding induces lateral assemblies of nucleolin with specific membrane components of lipid rafts. Our results suggest that the cell surface-expressed nucleolin serves as a low affinity receptor for MK and could be implicated in its entry process.
Collapse
Affiliation(s)
- Elias A Said
- Unité de Virologie et Immunologie Cellulaire (URA 1930 CNRS), Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
13
|
Haynes L, Rumsby M. The pleiotropin/midkine family of cytokines: role in glial-neuronal signalling. PROGRESS IN BRAIN RESEARCH 2001; 132:313-24. [PMID: 11545000 DOI: 10.1016/s0079-6123(01)32085-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L Haynes
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | |
Collapse
|
14
|
Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, Noda M, Muramatsu T, Kadomatsu K. Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J Biol Chem 2001; 276:15868-75. [PMID: 11340082 DOI: 10.1074/jbc.m005911200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Midkine, a heparin-binding growth factor, plays a critical role in cell migration causing suppression of neointima formation in midkine-deficient mice. Here we have determined the molecules essential for midkine-induced migration. Midkine induced haptotaxis of osteoblast-like cells, which was abrogated by the soluble form of midkine or pleiotrophin, a midkine-homologous protein. Chondroitin sulfate B, E, chondroitinase ABC, B, and orthovanadate, an inhibitor of protein-tyrosine phosphatase, suppressed the migration. Supporting these data, the cells examined expressed PTPzeta, a receptor-type protein-tyrosine phosphatase that exhibits high affinity to both midkine and pleiotrophin and harbors chondroitin sulfate chains. Furthermore, strong synergism between midkine and platelet-derived growth factor in migration was detected. The use of specific inhibitors demonstrated that mitogen-activated protein (MAP) kinase and protein-tyrosine phosphatase were involved in midkine-induced haptotaxis but not PDGF-induced chemotaxis, whereas phosphatidylinositol 3 (PI3)-kinase and protein kinase C were involved in both functions. Midkine activated both PI3-kinase and MAP kinases, the latter activation was blocked by a PI3-kinase inhibitor. Midkine further recruited PTPzeta and PI3-kinase. These results indicate that PTPzeta and concerted signaling involving PI3-kinase and MAP kinase are required for midkine-induced migration and demonstrate for the first time the synergism between midkine and platelet-derived growth factor in cell migration.
Collapse
Affiliation(s)
- M Qi
- Department of Biochemistry, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Callebaut C, Nisole S, Briand JP, Krust B, Hovanessian AG. Inhibition of HIV infection by the cytokine midkine. Virology 2001; 281:248-64. [PMID: 11277697 DOI: 10.1006/viro.2000.0767] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The growth factor midkine (MK) has been reported to bind heparan sulfate and nucleolin, two components of the cell surface implicated in the attachment of HIV-1 particles. Here we show that synthetic and recombinant preparations of MK inhibit in a dose-dependent manner infection of cells by T-lymphocyte- and macrophage-tropic HIV-1 isolates. The binding of labeled MK to cells is prevented by excess unlabeled MK or by the anti-HIV pseudopeptide HB-19 that blocks HIV entry by forming a stable complex with the cell-surface-expressed nucleolin. MK mRNA is systematically expressed in adult peripheral blood lymphocytes from healthy donors, while its expression becomes markedly but transiently increased upon in vitro treatment of lymphocytes with IL-2 or IFN-gamma and activation of T-lymphocytes by PHA or antibodies specific to CD3/CD28. In MK-producing lymphocytes, MK is detectable at the cell surface where it colocalizes with the surface-expressed nucleolin. Finally, by using MK-producing CD4(+) and CD4(-) cell clones we show that HIV infection in cell cultures could be inhibited in both an autocrine and a paracrine manner. The potent and distinct anti-HIV action of MK along with its enhanced expression in lymphocytes by various physiological stimuli suggests that MK is a cytokine that could be implicated in HIV-induced pathogenesis.
Collapse
Affiliation(s)
- C Callebaut
- Unité de Virologie et Immunologie Cellulaire, URA 1930 CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|