1
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
2
|
Meng Y, Liu R, Wang L, Li F, Tian Y, Lu H. Binding affinity and conformational change predictions for a series of inhibitors with RuBisCO in a carbon dioxide gas and water environment by multiple computational methods. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
De Porcellinis AJ, Nørgaard H, Brey LMF, Erstad SM, Jones PR, Heazlewood JL, Sakuragi Y. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab Eng 2018; 47:170-183. [PMID: 29510212 DOI: 10.1016/j.ymben.2018.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
Abstract
Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.
Collapse
Affiliation(s)
- Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Carlsberg Research Laboratory, 100 Ny Carlsberg Vej, 1799 Copenhagen V, Denmark
| | - Hanne Nørgaard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Laura Maria Furelos Brey
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Patrik R Jones
- Department Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| |
Collapse
|
4
|
Chen HH, Jiang JG. Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8099-8110. [PMID: 28838232 DOI: 10.1021/acs.jafc.7b03495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microalgae lipids have attracted great attention in the world as a result of their potential use for biodiesel productions. Microalgae are cultivated in photoautotrophic conditions in most cases, but several species are able to grow under heterotrophic conditions, in which microalgae are cultivated in the dark where the cell growth and reproduction are supported by organic carbons. This perspective is covering the related studies concerning the difference between hetero- and autotrophic cultivation of microalgae. The auto- and heterotrophic central carbon metabolic pathways in microalgae are described, and the catalyzing reactions of several key metabolic enzymes and their corresponding changes in the protein level are summarized. Under adverse environmental conditions, such as nutrient deprivation, microalgae have the ability to highly store energy by forming triacylglycerol (TAG), the reason for which is analyzed. In addition, the biosynthesis of fatty acids and TAGs and their difference between auto- and heterotrophic conditions are compared at the molecular level. The positive regulatory enzymes, such as glucose transporter protein, fructose-1,6-bisphosphate aldolase, and glycerol-3-phosphate dehydrogenase, and the negative regulation enzymes, such as triose phosphate isomerase, played a crucial role in the lipid accumulation auto- and heterotrophic conditions.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
5
|
Rasmussen RE, Erstad SM, Ramos-Martinez EM, Fimognari L, De Porcellinis AJ, Sakuragi Y. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria. Microb Cell Fact 2016; 15:186. [PMID: 27825349 PMCID: PMC5101802 DOI: 10.1186/s12934-016-0587-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are photosynthetic bacteria that thrive in diverse ecosystems and play major roles in the global carbon cycle. The abilities of cyanobacteria to fix atmospheric CO2 and to allocate the fixed carbons to chemicals and biofuels have attracted growing attentions as sustainable microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls, lysis of cyanobacterial cells is inefficient and often laborious. In some cases radioisotope-labeled substrates can be fed directly to intact cells; however, label-free assays are often favored due to safety and practical reasons. RESULTS Here we show an easy and highly efficient method for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism in cyanobacteria. Incubation of the cyanobacterial cells in the commercially available B-PER reagent for 10 min permeabilized the cells, as confirmed by the SYTOX Green staining. There was no significant change in the cell shape and no major loss of intracellular proteins was observed during the treatment. When used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process and subsequent activity assays were successfully adapted to the 96-well plate system. CONCLUSIONS An easy, efficient and scalable permeabilization protocol was established for cyanobacteria. The permeabilized cells can be directly applied for measurement of G6PDH and Rubisco activities without using radioisotopes and the protocol may be readily adapted to studies of other cyanobacterial species and other intracellular enzymes. The permeabilization and enzyme assays can be performed in 96-well plates in a high-throughput manner.
Collapse
Affiliation(s)
- Randi Engelberth Rasmussen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Erick Miguel Ramos-Martinez
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
6
|
Liu N, Yang Y, Li F, Ge F, Kuang Y. Importance of controlling pH-depended dissolved inorganic carbon to prevent algal bloom outbreaks. BIORESOURCE TECHNOLOGY 2016; 220:246-252. [PMID: 27584901 DOI: 10.1016/j.biortech.2016.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 06/06/2023]
Abstract
This study investigated effects of pH-depended inorganic carbon (IC) species and pH on algal growth in the sewage simulation system, and fruitfully discussed the relationships among IC, pH and algal growth by the Monod kinetics. Results showed HCO3(-) significantly increased algal growth by 3.17-6.52 times than that of CO3(2-) and/or glucose when the value of pH was in the range of 8.0-9.5, and also the preferentially utilized indicated by the affinity coefficient (Kp) of HCO3(-), CO3(2-) and glucose (0.17, 15.14 and 31.22, respectively). Meanwhile, the same pH range facilitated HCO3(-) to become a dominated species (e.g., 48.80-93.19% of total IC). More importantly, good linear correlations pairwise existed among pH, IC species and algae growth. These results suggested pH plays a critical role in regulation of IC species and algae growth, which would be an efficient method to control the IC discharge from sewage effluents and weaken bloom outbreak.
Collapse
Affiliation(s)
- Na Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yixuan Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Yangduo Kuang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
7
|
Ueno M, Sae-Tang P, Kusama Y, Hihara Y, Matsuda M, Hasunuma T, Nishiyama Y. Moderate Heat Stress Stimulates Repair of Photosystem II During Photoinhibition in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2417-2426. [PMID: 27565206 DOI: 10.1093/pcp/pcw153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Examination of the effects of high temperature on the photoinhibition of photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803 revealed that the extent of photoinhibition of PSII was lower at moderately high temperatures (35-42 °C) than at 30 °C. Photodamage to PSII, as determined in the presence of chloramphenicol, which blocks the repair of PSII, was accelerated at the moderately high temperatures but the effects of repair were greater than those of photodamage. The synthesis de novo of the D1 protein, which is essential for the repair of PSII, was enhanced at 38 °C. Electron transport and the synthesis of ATP were also enhanced at 38 °C, while levels of reactive oxygen species fell. Inhibition of the Calvin-Benson cycle with glycolaldehyde abolished the enhancement of repair of PSII at 38 °C, suggesting that an increase in the activity of the Calvin-Benson cycle might be required for the enhancement of repair at moderately high temperatures. The synthesis de novo of metabolic intermediates of the Calvin-Benson cycle, such as 3-phosphoglycerate, was also enhanced at 38 °C. We propose that moderate heat stress might enhance the repair of PSII by stimulating the synthesis of ATP and depressing the production of reactive oxygen species, via the stimulation of electron transport and suppression of the accumulation of excess electrons on the acceptor side of photosystem I, which might be driven by an increase in the activity of the Calvin-Benson cycle.
Collapse
Affiliation(s)
- Mamoru Ueno
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Penporn Sae-Tang
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuri Kusama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Zhang SF, Yuan CJ, Chen Y, Chen XH, Li DX, Liu JL, Lin L, Wang DZ. Comparative Transcriptomic Analysis Reveals Novel Insights into the Adaptive Response of Skeletonema costatum to Changing Ambient Phosphorus. Front Microbiol 2016; 7:1476. [PMID: 27703451 PMCID: PMC5028394 DOI: 10.3389/fmicb.2016.01476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphorus (P) is a limiting macronutrient for diatom growth and productivity in the ocean. Much effort has been devoted to the physiological response of marine diatoms to ambient P change, however, the whole-genome molecular mechanisms are poorly understood. Here, we utilized RNA-Seq to compare the global gene expression patterns of a marine diatom Skeletonema costatum grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions. In total 34,942 unique genes were assembled and 20.8% of them altered significantly in abundance under different P conditions. Genes encoding key enzymes/proteins involved in P utilization, nucleotide metabolism, photosynthesis, glycolysis, and cell cycle regulation were significantly up-regulated in P-deficient cells. Genes participating in circadian rhythm regulation, such as circadian clock associated 1, were also up-regulated in P-deficient cells. The response of S. costatum to ambient P deficiency shows several similarities to the well-described responses of other marine diatom species, but also has its unique features. S. costatum has evolved the ability to re-program its circadian clock and intracellular biological processes in response to ambient P deficiency. This study provides new insights into the adaptive mechanisms to ambient P deficiency in marine diatoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, Department of Environmental Science and Engineering, College of the Environment and Ecology, Xiamen UniversityXiamen, China
| |
Collapse
|
9
|
Gonzalez-Esquer CR, Newnham SE, Kerfeld CA. Bacterial microcompartments as metabolic modules for plant synthetic biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:66-75. [PMID: 26991644 DOI: 10.1111/tpj.13166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 05/28/2023]
Abstract
Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology.
Collapse
Affiliation(s)
| | - Sarah E Newnham
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Berkeley Synthetic Biology Institute, UC Berkeley, Berkeley, CA, USA
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
Fuszard MA, Ow SY, Gan CS, Noirel J, Ternan NG, McMullan G, Biggs CA, Reardon KF, Wright PC. The quantitative proteomic response of Synechocystis sp. PCC6803 to phosphate acclimation. AQUATIC BIOSYSTEMS 2013; 9:5. [PMID: 23442353 PMCID: PMC3600050 DOI: 10.1186/2046-9063-9-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/28/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is a critical nutrient for all life and is periodically limiting in marine and freshwater provinces, yet little is understood how organisms acclimate to fluctuations in Pi within their environment. To investigate whole cell adaptation, we grew Synechocystis sp. PCC6803, a model freshwater cyanobacterium, in 3%, and 0.3% inorganic phosphate (Pi) media. The cells were allowed to acclimate over 60 days, and cells were harvested for quantitative high throughput mass spectrometry-based proteomics using the iTRAQ™ labelling technology. RESULTS In total, 120 proteins were identified, and 52 proteins were considered differentially abundant compared to the control. Alkaline phosphatase (APase) activities correlated significantly (p < 0.05) with observed relative PhoA abundances. PstS1 and PstS2 were both observed, yet PstS1 was not differentially more abundant than the control. Phycobilisome protein abundances appeared to be coordinated, and are significantly less abundant in 0.3% Pi than 3% Pi cultures. Also, the central metabolic cell function appears to have shifted towards the production of (NADPH) reducing energy and nucleotide sugars. CONCLUSIONS This acclimation response bears strong similarity to the previously reported response to nitrogen deprivation within Synechocystis sp. PCC 6803. However, it also demonstrates some characteristics of desiccation stress, such as the regulation of fatty acids and increased abundance of rehydrin in the 3% Pi culture.
Collapse
Affiliation(s)
- Matthew A Fuszard
- BSRC Mass Spectrometry and Proteomics Facility, Department of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Saw Yen Ow
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Josseilin Noirel
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Nigel G Ternan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Catherine A Biggs
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kenneth F Reardon
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523-1370, USA
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| |
Collapse
|
11
|
Zarzycki J, Axen SD, Kinney JN, Kerfeld CA. Cyanobacterial-based approaches to improving photosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:787-98. [PMID: 23095996 DOI: 10.1093/jxb/ers294] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants rely on the Calvin-Benson (CB) cycle for CO(2) fixation. The key carboxylase of the CB cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Efforts to enhance carbon fixation in plants have traditionally focused on RubisCO or on approaches that can help to remedy RubisCO's undesirable traits: its low catalytic efficiency and photorespiration. Towards reaching the goal of improving plant photosynthesis, cyanobacteria may be instrumental. Because of their evolutionary relationship to chloroplasts, they represent ideal model organisms for photosynthesis research. Furthermore, the molecular understanding of cyanobacterial carbon fixation provides a rich source of strategies that can be exploited for the bioengineering of chloroplasts. These strategies include the cyanobacterial carbon concentrating mechanism (CCM), which consists of active and passive transporter systems for inorganic carbon and a specialized organelle, the carboxysome. The carboxysome encapsulates RubisCO together with carbonic anhydrase in a protein shell, resulting in an elevated CO(2) concentration around RubisCO. Moreover, cyanobacteria differ from plants in the isoenzymes involved in the CB cycle and the photorespiratory pathways as well as in mechanisms that can affect the activity of RubisCO. In addition, newly available cyanobacterial genome sequence data from the CyanoGEBA project, which has more than doubled the amount of genomic information available for cyanobacteria, increases our knowledge on the CCM and the occurrence and distribution of genes of interest.
Collapse
Affiliation(s)
- Jan Zarzycki
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | | | | | | |
Collapse
|
12
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
13
|
Marcus Y, Altman-Gueta H, Wolff Y, Gurevitz M. Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4173-82. [PMID: 21551078 PMCID: PMC3153676 DOI: 10.1093/jxb/err116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Orthophosphate (Pi) stimulates the activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) while paradoxically inhibiting its catalysis. Of three Pi-binding sites, the roles of the 5P- and latch sites have been documented, whereas that of the 1P-site remained unclear. Conserved residues at the 1P-site of Rubisco from the cyanobacterium Synechocystis PCC6803 were substituted and the kinetic properties of the enzyme derivatives and effects on cell photosynthesis and growth were examined. While Pi-stimulated Rubisco activation diminished for enzyme mutants T65A/S and G404A, inhibition of catalysis by Pi remained unchanged. Together with previous studies, the results suggest that all three Pi-binding sites are involved in stimulation of Rubisco activation, whereas only the 5P-site is involved in inhibition of catalysis. While all the mutations reduced the catalytic turnover of Rubisco (K(cat)) between 6- and 20-fold, the photosynthesis and growth rates under saturating irradiance and inorganic carbon (Ci) concentrations were only reduced 40-50% (in the T65A/S mutants) or not at all (G404A mutant). Analysis of the mutant cells revealed a 3-fold increase in Rubisco content that partially compensated for the reduced K(cat) so that the carboxylation rate per chlorophyll was one-third of that in the wild type. Correlation between the kinetic properties of Rubisco and the photosynthetic rate (P(max)) under saturating irradiance and Ci concentrations indicate that a >60% reduction in K(cat) can be tolerated before P(max) in Synechocystsis PCC6803 is affected. These results indicate that the limitation of Rubisco activity on the rate of photosynthesis in Synechocystis is low. Determination of Calvin cycle metabolites revealed that unlike in higher plants, cyanobacterial photosynthesis is constrained by phosphoglycerate reduction probably due to limitation of ATP or NADPH.
Collapse
Affiliation(s)
- Yehouda Marcus
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
14
|
Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 2009; 396:105-17. [PMID: 19925807 DOI: 10.1016/j.jmb.2009.11.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
Abstract
Carboxysomes are polyhedral inclusion bodies that play a key role in autotrophic metabolism in many bacteria. Using electron cryotomography, we examined carboxysomes in their native states within intact cells of three chemolithoautotrophic bacteria. We found that carboxysomes generally cluster into distinct groups within the cytoplasm, often in the immediate vicinity of polyphosphate granules, and a regular lattice of density frequently connects granules to nearby carboxysomes. Small granular bodies were also seen within carboxysomes. These observations suggest a functional relationship between carboxysomes and polyphosphate granules. Carboxysomes exhibited greater size, shape, and compositional variability in cells than in purified preparations. Finally, we observed carboxysomes in various stages of assembly, as well as filamentous structures that we attribute to misassembled shell protein. Surprisingly, no more than one partial carboxysome was ever observed per cell. Based on these observations, we propose a model for carboxysome assembly in which the shell and the internal RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) lattice form simultaneously, likely guided by specific interactions between shell proteins and RuBisCOs.
Collapse
|
15
|
Uhlik O, Kamlar M, Kohout L, Jezek R, Harmatha J, Macek T. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein. Steroids 2008; 73:1433-40. [PMID: 18761365 DOI: 10.1016/j.steroids.2008.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/25/2008] [Accepted: 07/22/2008] [Indexed: 11/30/2022]
Abstract
The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%.
Collapse
Affiliation(s)
- Ondrej Uhlik
- Institute of Organic Chemistry and Biochemistry AS CR, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
16
|
Snir A, Gurevitz M, Marcus Y. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea. PHOTOSYNTHESIS RESEARCH 2006; 90:233-42. [PMID: 17286188 DOI: 10.1007/s11120-007-9142-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 01/21/2007] [Indexed: 05/13/2023]
Abstract
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 mumol photons m(-2) s(-1)). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO(2) (35 muM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO(2)-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.
Collapse
Affiliation(s)
- Ainit Snir
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
17
|
Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M. Mutagenesis at two distinct phosphate-binding sites unravels their differential roles in regulation of Rubisco activation and catalysis. J Bacteriol 2005; 187:4222-8. [PMID: 15937184 PMCID: PMC1151729 DOI: 10.1128/jb.187.12.4222-4228.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orthophosphate (P(i)) has two antagonistic effects on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), stimulation of activation and inhibition of catalysis by competition with the substrate RuBP. The enzyme binds P(i) at three distinct sites, two within the catalytic site (where 1P and 5P of ribulose 1,5-bisphosphate [RuBP] bind), and the third at the latch site (a positively charged pocket involved in active-site closure during catalysis). We examined the role of the latch and 5P sites in regulation of Rubisco activation and catalysis by introducing specific mutations in the enzyme of the cyanobacterium Synechocystis sp. strain PCC 6803. Whereas mutations at both sites abolished the P(i)-stimulated Rubisco activation, substitution of residues at the 5P site, but not at the latch site, affected the P(i) inhibition of Rubisco catalysis. Although some of these mutations substantially reduced the catalytic turnover of Rubisco and increased the K(m)(RuBP), they had little to moderate effect on the rate of photosynthesis and no effect on photoautotrophic growth. These findings suggest that in cyanobacteria, Rubisco does not limit photosynthesis to the extent previously estimated. These results indicate that both the latch and 5P sites participate in regulation of Rubisco activation, whereas P(i) binding only at the 5P site inhibits catalysis in a competitive manner.
Collapse
Affiliation(s)
- Yehouda Marcus
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
18
|
Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M. Dual role of cysteine 172 in redox regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity and degradation. J Bacteriol 2003; 185:1509-17. [PMID: 12591867 PMCID: PMC148051 DOI: 10.1128/jb.185.5.1509-1517.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkylation and oxidation of cysteine residues significantly decrease the catalytic activity and stimulate the degradation of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We analyzed the role of vicinal cysteine residues in redox regulation of RuBisCO from Synechocystis sp. strain PCC 6803. Cys172 and Cys192, which are adjacent to the catalytic site, and Cys247, which cross-links two large subunits, were replaced by alanine. Whereas all mutant cells (C172A, C192A, C172A-C192A, and C247A) and the wild type grew photoautotrophically at similar rates, the maximal photosynthesis rates of C172A mutants decreased 10 to 20% as a result of 40 to 60% declines in RuBisCO turnover number. Replacement of Cys172, but not replacement of Cys192, prominently decreased the effect of cysteine alkylation or oxidation on RuBisCO. Oxidants that react with vicinal thiols had a less inhibitory effect on the activity of either the C172A or C192A enzyme variants, suggesting that a disulfide bond was formed upon oxidation. Thiol oxidation induced RuBisCO dissociation into subunits. This effect was either reduced in the C172A and C192A mutant enzymes or eliminated by carboxypentitol bisphosphate (CPBP) binding to the activated enzyme form. The CPBP effect presumably resulted from a conformational change in the carbamylated CPBP-bound enzyme, as implied from an alteration in the electrophoretic mobility. Stress conditions, provoked by nitrate deprivation, decreased the RuBisCO contents and activities in the wild type and in the C192A and C247A mutants but not in the C172A and C172A-C192A mutants. These results suggest that although Cys172 does not participate in catalysis, it plays a role in redox regulation of RuBisCO activity and degradation.
Collapse
Affiliation(s)
- Yehouda Marcus
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
19
|
Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A. Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3- accumulation in cyanobacteria. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:43-50. [PMID: 17147679 DOI: 10.1046/j.1467-7652.2003.00003.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transgenic Arabidopsis thaliana and Nicotiana tabacum plants that express ictB, a gene involved in HCO3- accumulation within the cyanobacterium Synechococcus sp. PCC 7942, exhibited significantly faster photosynthetic rates than the wild-types under limiting but not under saturating CO2 concentrations. Under conditions of low relative humidity, growth of the transgenic A. thaliana plants was considerably faster than the wild-type. This enhancement of growth was not observed under humid conditions. There was no difference in the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) detected in the wild-types and their respective transgenic plants. Following activation in vitro, the activities of RubisCO from either low- or high-humidity-grown transgenic plants were similar to those observed in the wild-types. In contrast, the in vivo RubisCO activity, i.e. without prior activation, in plants grown under low humidity was considerably higher in ictB-expressing plants than in their wild-types. The CO2 compensation point in the transgenic plants that express ictB was lower than in the wild-types, suggesting that the concentration of CO2 in close proximity to RubisCO was higher. This may explain the higher activation level of RubisCO and enhanced photosynthetic activities and growth in the transgenic plants. These data indicated a potential use of ictB for the stimulation of crop yield.
Collapse
Affiliation(s)
- Judy Lieman-Hurwitz
- Department of Plant Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
20
|
Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:319-30. [PMID: 12164811 DOI: 10.1046/j.1365-313x.2002.01364.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dormancy is an important developmental program allowing plants to withstand extended periods of extreme environmental conditions, such as low temperature or drought. Seed dormancy, bud dormancy and desiccation tolerance have been extensively studied, but little is known about the mechanisms involved in the dormancy of drought-tolerant plants, key to the survival of many plant species in arid and semi-arid environments. Subtractive PCR cloning of cDNAs from Retama raetam, a C3 drought-tolerant legume, revealed that dormancy in this plant is accompanied by the accumulation of transcripts encoding a pathogenesis-related, PR-10-like protein; a low temperature-inducible dehydrin; and a WRKY transcription factor. In contrast, non-dormant plants subjected to stress conditions contained transcripts encoding a cytosolic small heat-shock protein, HSP18; an ethylene-response transcriptional co-activator; and an early light-inducible protein. Physiological and biochemical analysis of Rubisco activity and protein in dormant and non-dormant tissues suggested a novel post-translational mechanism of regulation that may be controlled by the redox status of cells. Ultrastructural analysis of dormant plants revealed that air spaces of photosynthetic tissues contained an extracellular matrix that may function to prevent water loss. The cytosol of dormant cells appeared to be in a glassy state, limiting metabolic activity. A combination of biochemical, molecular and structural mechanisms, in association with metabolic suppression, may be key to the extreme drought tolerance of R. raetam and its acclimation to the desert ecosystem. These may enable plants to withstand long periods of drought, as well as rapidly to exit dormancy upon rainfall.
Collapse
Affiliation(s)
- Lilach Pnueli
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|