1
|
Yu L, Nie Y, Jiao J, Jian L, Zhao J. The Sequencing-Based Mapping Method for Effectively Cloning Plant Mutated Genes. Int J Mol Sci 2021; 22:ijms22126224. [PMID: 34207582 PMCID: PMC8226582 DOI: 10.3390/ijms22126224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
A forward genetic approach is a powerful tool for identifying the genes underlying the phenotypes of interest. However, the conventional map-based cloning method is lengthy, requires a large mapping population and confirmation of many candidate genes in a broad genetic region to clone the causal variant. The whole-genome sequencing method clones the variants with a certain failure probability for multiple reasons, especially for heterozygotes, and could not be used to clone the mutation of epigenetic modifications. Here, we applied the highly complementary characteristics of these two methods and developed a sequencing-based mapping method (SBM) for identifying the location of plant variants effectively with a small population and low cost, which is very user-friendly for most popular laboratories. This method used the whole-genome sequencing data of two pooled populations to screen out enough markers. These markers were used to identify and narrow the candidate region by analyzing the marker-indexes and recombinants. Finally, the possible mutational sites were identified using the whole-genome sequencing data and verified in individual mutants. To elaborate the new method, we displayed the cloned processes in one Arabidopsis heterozygous mutant and two rice homozygous mutants. Thus, the sequencing-based mapping method could clone effectively different types of plant mutations and was a powerful tool for studying the functions of plant genes in the species with known genomic sequences.
Collapse
|
2
|
Cviková K, Cattonaro F, Alaux M, Stein N, Mayer KF, Doležel J, Bartoš J. High-throughput physical map anchoring via BAC-pool sequencing. BMC PLANT BIOLOGY 2015; 15:99. [PMID: 25887276 PMCID: PMC4407875 DOI: 10.1186/s12870-015-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/20/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Collapse
Affiliation(s)
- Kateřina Cviková
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Via J. Linussio 51, 33100, Udine, Italy.
| | - Michael Alaux
- INRA, UR1164 URGI - Research Unit in Genomics-Info, INRA de Versailles, Route de Saint-Cyr, 78026, Versailles, France.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany.
| | - Klaus Fx Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| | - Jan Bartoš
- Institute of Experimental Botany, Centre of Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc-Holice, Czech Republic.
| |
Collapse
|
3
|
Gao W, Saha S, Ma DP, Guo Y, Jenkins JN, Stelly DM. A cotton-fiber-associated cyclin-dependent kinase a gene: characterization and chromosomal location. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:613812. [PMID: 22745634 PMCID: PMC3382222 DOI: 10.1155/2012/613812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/28/2012] [Indexed: 06/01/2023]
Abstract
A cotton fiber cDNA and its genomic sequences encoding an A-type cyclin-dependent kinase (GhCDKA) were cloned and characterized. The encoded GhCDKA protein contains the conserved cyclin-binding, ATP binding, and catalytic domains. Northern blot and RT-PCR analysis revealed that the GhCDKA transcript was high in 5-10 DPA fibers, moderate in 15 and 20 DPA fibers and roots, and low in flowers and leaves. GhCDKA protein levels in fibers increased from 5-15 DPA, peaked at 15 DPA, and decreased from 15 t0 20 DPA. The differential expression of GhCDKA suggested that the gene might play an important role in fiber development. The GhCDKA sequence data was used to develop single nucleotide polymorphism (SNP) markers specific for the CDKA gene in cotton. A primer specific to one of the SNPs was used to locate the CDKA gene to chromosome 16 by deletion analysis using a series of hypoaneuploid interspecific hybrids.
Collapse
Affiliation(s)
- Weifan Gao
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Sukumar Saha
- USDA/ARS Crop Science Research Laboratory, P.O. Box 5367, Mississippi State, MS 39762, USA
| | - Din-Pow Ma
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yufang Guo
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Johnie N. Jenkins
- USDA/ARS Crop Science Research Laboratory, P.O. Box 5367, Mississippi State, MS 39762, USA
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
4
|
Jiang Z, Michal JJ, Beckman KB, Lyons JB, Zhang M, Pan Z, Rokhsar DS, Harland RM. Development and initial characterization of a HAPPY panel for mapping the X. tropicalis genome. Int J Biol Sci 2011; 7:1037-44. [PMID: 21912511 PMCID: PMC3164153 DOI: 10.7150/ijbs.7.1037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/13/2011] [Indexed: 01/22/2023] Open
Abstract
HAPPY mapping was designed to pursue the analysis of approximately random HAPloid DNA breakage samples using the PolYmerase chain reaction for mapping genomes. In the present study, we improved the method and integrated two other molecular techniques into the process: whole genome amplification and the Sequenom SNP (single nucleotide polymorphism) genotyping assay in order to facilitate whole genome mapping of X. tropicalis. The former technique amplified enough DNA materials to genotype a large number of markers, while the latter allowed for relatively high throughput marker genotyping with multiplex assays on the HAPPY lines. A total of 58 X. tropicalis genes were genotyped on an initial panel of 383 HAPPY lines, which contributed to formation of a working panel of 146 lines. Further genotyping of 29 markers on the working panel led to construction of a HAPPY map for the X. tropicalis genome. We believe that our improved HAPPY method described in the present study has paved the way for the community to map different genomes with a simple, but powerful approach.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Vu GTH, Caligari PDS, Wilkinson MJ. A simple, high throughput method to locate single copy sequences from Bacterial Artificial Chromosome (BAC) libraries using High Resolution Melt analysis. BMC Genomics 2010; 11:301. [PMID: 20462427 PMCID: PMC2881884 DOI: 10.1186/1471-2164-11-301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 05/12/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The high-throughput anchoring of genetic markers into contigs is required for many ongoing physical mapping projects. Multidimentional BAC pooling strategies for PCR-based screening of large insert libraries is a widely used alternative to high density filter hybridisation of bacterial colonies. To date, concerns over reliability have led most if not all groups engaged in high throughput physical mapping projects to favour BAC DNA isolation prior to amplification by conventional PCR. RESULTS Here, we report the first combined use of Multiplex Tandem PCR (MT-PCR) and High Resolution Melt (HRM) analysis on bacterial stocks of BAC library superpools as a means of rapidly anchoring markers to BAC colonies and thereby to integrate genetic and physical maps. We exemplify the approach using a BAC library of the model plant Arabidopsis thaliana. Super pools of twenty five 384-well plates and two-dimension matrix pools of the BAC library were prepared for marker screening. The entire procedure only requires around 3 h to anchor one marker. CONCLUSIONS A pre-amplification step during MT-PCR allows high multiplexing and increases the sensitivity and reliability of subsequent HRM discrimination. This simple gel-free protocol is more reliable, faster and far less costly than conventional PCR screening. The option to screen in parallel 3 genetic markers in one MT-PCR-HRM reaction using templates from directly pooled bacterial stocks of BAC-containing bacteria further reduces time for anchoring markers in physical maps of species with large genomes.
Collapse
Affiliation(s)
- Giang T H Vu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK
| | | | | |
Collapse
|
6
|
Vu GTH, Dear PH, Caligari PDS, Wilkinson MJ. BAC-HAPPY mapping (BAP mapping): a new and efficient protocol for physical mapping. PLoS One 2010; 5:e9089. [PMID: 20161702 PMCID: PMC2816996 DOI: 10.1371/journal.pone.0009089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/20/2010] [Indexed: 12/02/2022] Open
Abstract
Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning approximately 10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual "BAC-HAPPY-mapping" to convert BAC landing data into BAC linkage contigs is possible.
Collapse
Affiliation(s)
- Giang T. H. Vu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Paul H. Dear
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Peter D. S. Caligari
- Sumatra Bioscience, Singapore, Singapore
- BioHybrids International, Woodley, United Kingdom
| | - Mike J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
7
|
Jiang Z, Rokhsar DS, Harland RM. Old can be new again: HAPPY whole genome sequencing, mapping and assembly. Int J Biol Sci 2009; 5:298-303. [PMID: 19381348 PMCID: PMC2669597 DOI: 10.7150/ijbs.5.298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/12/2009] [Indexed: 11/05/2022] Open
Abstract
During the last three decades, both genome mapping and sequencing methods have advanced significantly to provide a foundation for scientists to understand genome structures and functions in many species. Generally speaking, genome mapping relies on genome sequencing to provide basic materials, such as DNA probes and markers for their localizations, thus constructing the maps. On the other hand, genome sequencing often requires a high-resolution map as a skeleton for whole genome assembly. However, both genome mapping and sequencing have never come together in one pipeline. After reviewing mapping and next-generation sequencing methods, we would like to share our thoughts with the genome community on how to combine the HAPPY mapping technique with the new-generation sequencing, thus integrating two systems into one pipeline, called HAPPY pipeline. The pipeline starts with preparation of a HAPPY panel, followed by multiple displacement amplification for producing a relatively large quantity of DNA. Instead of conventional marker genotyping, the amplified panel DNA samples are subject to new-generation sequencing with barcode method, which allows us to determine the presence/absence of a sequence contig as a traditional marker in the HAPPY panel. Statistical analysis will then be performed to infer how close or how far away from each other these contigs are within a genome and order the whole genome sequence assembly as well. We believe that such a universal approach will play an important role in genome sequencing, mapping, and assembly of many species; thus advancing genome science and its applications in biomedicine and agriculture.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-6351, USA.
| | | | | |
Collapse
|
8
|
Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N. The international barley sequencing consortium--at the threshold of efficient access to the barley genome. PLANT PHYSIOLOGY 2009; 149:142-7. [PMID: 19126706 PMCID: PMC2613708 DOI: 10.1104/pp.108.128967] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/03/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Daniela Schulte
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jones N, Ougham H, Thomas H, Pašakinskienė I. Markers and mapping revisited: finding your gene. THE NEW PHYTOLOGIST 2009; 183:935-966. [PMID: 19594696 DOI: 10.1111/j.1469-8137.2009.02933.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.
Collapse
Affiliation(s)
- Neil Jones
- IBERS, Aberystwyth University, Edward Llwyd Building, Penglais Campus, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Helen Ougham
- IBERS, Aberystwyth University, Gogerddan Campus, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Howard Thomas
- IBERS, Aberystwyth University, Edward Llwyd Building, Penglais Campus, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Izolda Pašakinskienė
- Botanical Garden of Vilnius University, Kairenu 43, LT-10239 Vilnius, Lithuania
- Faculty of Natural Sciences, Department of Botany and Genetics, MK Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|
10
|
Riera-Lizarazu O, Vales MI, Kianian SF. Radiation hybrid (RH) and HAPPY mapping in plants. Cytogenet Genome Res 2008; 120:233-40. [PMID: 18504352 DOI: 10.1159/000121072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2007] [Indexed: 11/19/2022] Open
Abstract
Radiation hybrid (RH) and HAPPY mapping are two technologies used in animal systems that have attracted the attention of the plant genetics community because they bridge the resolution gap between meiotic and BAC-based physical mapping that would facilitate the analysis of plant species lacking substantial genomics resources. Research has shown that the essence of these approaches can be applied and that a variety of strategies can be used to produce mapping panels. Mapping panels composed of live plants, protoplast fusion cultures, and sub-genomic DNA samples have been described. The resolution achievable by RH mapping panels involving live-plant derivatives of a monosomic maize (Zea mays) chromosome 9 addition in allohexaploid oat (Avena sativa), a monosomic chromosome 1D addition in allotetraploid durum wheat (Triticum turgidum), and interspecific hybrids between two tetraploid cotton species (G. hirsutum and G. barbadense), has been estimated to range from 0.6 to 6 Mb. On the other hand, a more comprehensive evaluation of one panel from durum wheat suggests that a higher mapping resolution (approximately 200 kb) is possible. In cases involving RH mapping panels based on barley (Hordeum vulgare)-tobacco (Nicotiana tabacum) protoplast fusions or a HAPPY mapping panel based on genomic DNA from Arabidopsis thaliana, the potential mapping resolution appears to be higher (50 to 200 kb). Despite these encouraging results, the application of either RH or HAPPY mapping in plants is still in the experimental phase and additional work is clearly needed before these methods are more routinely utilized.
Collapse
Affiliation(s)
- O Riera-Lizarazu
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-3002, USA.
| | | | | |
Collapse
|
11
|
Abstract
The cereals are of enormous importance to mankind. Many of the major cereal species - specifically, wheat, barley, oat, rye, and maize - have large genomes. Early cytogenetics, genome analysis and genetic mapping in the cereals benefited greatly from their large chromosomes, and the allopolyploidy of wheat and oats that has allowed for the development of many precise cytogenetic stocks. In the genomics era, however, large genomes are disadvantageous. Sequencing large and complex genomes is expensive, and the assembly of genome sequence is hampered by a significant content of repetitive DNA and, in allopolyploids, by the presence of homoeologous genomes. Dissection of the genome into its component chromosomes and chromosome arms provides an elegant solution to these problems. In this review we illustrate how this can be achieved by flow cytometric sorting. We describe the development of methods for the preparation of intact chromosome suspensions from the major cereals, and their analysis and sorting using flow cytometry. We explain how difficulties in the discrimination of specific chromosomes and their arms can be overcome by exploiting extant cytogenetic stocks of polyploid wheat and oats, in particular chromosome deletion and alien addition lines. Finally, we discuss some of the applications of flow-sorted chromosomes, and present some examples demonstrating that a chromosome-based approach is advantageous for the analysis of the complex genomes of cereals, and that it can offer significant potential for the delivery of genome sequencing and gene cloning in these crops.
Collapse
Affiliation(s)
- Jaroslav Dolezel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, CZ-77200, Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
12
|
Suchánková P, Kubaláková M, Kovárová P, Bartos J, Cíhalíková J, Molnár-Láng M, Endo TR, Dolezel J. Dissection of the nuclear genome of barley by chromosome flow sorting. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:651-9. [PMID: 16810504 DOI: 10.1007/s00122-006-0329-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 05/27/2006] [Indexed: 05/10/2023]
Abstract
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C approximately 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat-barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H-7H. Thus, the barley genome can be dissected into fractions representing only about 6-12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.
Collapse
Affiliation(s)
- Pavla Suchánková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, 77200 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Recent advances in sequencing technologies have led to a remarkable increase in the number of sequenced fungal genomes. Several important plant pathogenic fungi are among those that have been sequenced or are being sequenced. Additional fungal pathogens are likely to be sequenced in the near future. Analysis of the available genomes has provided useful information about genes that may be important for plant infection and colonization. Genome features, such as repetitive sequences, telomeres, conserved syntenic blocks, and expansion of pathogenicity-related genes, are discussed in detail with Magnaporthe oryzae (M. grisea) and Fusarium graminearum as examples. Functional and comparative genomic studies in plant pathogenic fungi, although still in the early stages and limited to a few pathogens, have enormous potential to improve our understanding of the molecular mechanisms involved in host-pathogen interactions. Development of advanced genomics tools and infrastructure is critical for efficient utilization of the vast wealth of available genome sequence information and will form a solid foundation for systems biology studies of plant pathogenic fungi.
Collapse
Affiliation(s)
- Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
14
|
Kubaláková M, Kovárová P, Suchánková P, Cíhalíková J, Bartos J, Lucretti S, Watanabe N, Kianian SF, Dolezel J. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 2005; 170:823-9. [PMID: 15802508 PMCID: PMC1450420 DOI: 10.1534/genetics.104.039180] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study evaluates the potential of flow cytometry for chromosome sorting in durum wheat (Triticum turgidum Desf. var. durum, 2n = 4x = 28). Histograms of fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes consisted of three peaks. Of these, one represented chromosome 3B, a small peak corresponded to chromosomes 1A and 6A, and a large peak represented the remaining 11 chromosomes. Chromosomes sorted onto microscope slides were identified after fluorescence in situ hybridization (FISH) with probes for GAA microsatellite, pSc119.2, and Afa repeats. Genomic distribution of these sequences was determined for the first time in durum wheat and a molecular karyotype has been developed for this crop. Flow karyotyping in double-ditelosomic lines of durum wheat revealed that the lines facilitated sorting of any arm of the wheat A- and B-genome chromosomes. Compared to hexaploid wheat, flow karyotype of durum wheat is less complex. This property results in better discrimination of telosomes and high purities in sorted fractions, ranging from 90 to 98%. We have demonstrated that large insert libraries can be created from DNA purified using flow cytometry. This study considerably expands the potential of flow cytogenetics for use in wheat genomics and opens the possibility of sequencing the genome of this important crop one chromosome arm at a time.
Collapse
Affiliation(s)
- Marie Kubaláková
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Safár J, Bartos J, Janda J, Bellec A, Kubaláková M, Valárik M, Pateyron S, Weiserová J, Tusková R, Cíhalíková J, Vrána J, Simková H, Faivre-Rampant P, Sourdille P, Caboche M, Bernard M, Dolezel J, Chalhoub B. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:960-8. [PMID: 15341637 DOI: 10.1111/j.1365-313x.2004.02179.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was successfully sorted by flow cytometry and cloned into a bacterial artificial chromosome (BAC), using only 1.8 million chromosomes and an adapted protocol developed for this purpose. The BAC library (designated as TA-3B) consists of 67 968 clones with an average insert size of 103 kb. It represents 6.2 equivalents of chromosome 3B with 100% coverage and 90% specificity as confirmed by genetic markers. This method was validated using other chromosomes and its broad application and usefulness in facilitating wheat genome analysis were demonstrated by target characterization of the chromosome 3B structure through cytogenetic mapping. This report on the successful cloning of flow-sorted chromosomes into BACs marks the integration of flow cytogenetics and genomics and represents a great leap forward in genetics and genomic analysis.
Collapse
Affiliation(s)
- Jan Safár
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stacey G, Vodkin L, Parrott WA, Shoemaker RC. National Science Foundation-sponsored workshop report. Draft plan for soybean genomics. PLANT PHYSIOLOGY 2004; 135:59-70. [PMID: 15141067 PMCID: PMC429333 DOI: 10.1104/pp.103.037903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 05/11/2023]
Abstract
Recent efforts to coordinate and define a research strategy for soybean (Glycine max) genomics began with the establishment of a Soybean Genetics Executive Committee, which will serve as a communication focal point between the soybean research community and granting agencies. Secondly, a workshop was held to define a strategy to incorporate existing tools into a framework for advancing soybean genomics research. This workshop identified and ranked research priorities essential to making more informed decisions as to how to proceed with large scale sequencing and other genomics efforts. Most critical among these was the need to finalize a physical map and to obtain a better understanding of genome microstructure. Addressing these research needs will require pilot work on new technologies to demonstrate an ability to discriminate between recently duplicated regions in the soybean genome and pilot projects to analyze an adequate amount of random genome sequence to identify and catalog common repeats. The development of additional markers, reverse genetics tools, and bioinformatics is also necessary. Successful implementation of these goals will require close coordination among various working groups.
Collapse
Affiliation(s)
- Gary Stacey
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65203, USA.
| | | | | | | |
Collapse
|
17
|
Waugh R, Dear PH, Powell W, Machray GC. Physical education - new technologies for mapping plant genomes. TRENDS IN PLANT SCIENCE 2002; 7:521-523. [PMID: 12475484 DOI: 10.1016/s1360-1385(02)02373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|