1
|
Kosolapova AO, Belousov MV, Sulatsky MI, Tsyganova AV, Sulatskaya AI, Bobylev AG, Shtark OY, Tsyganov VE, Volkov KV, Zhukov VA, Tikhonovich IA, Nizhnikov AA. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1014699. [PMID: 36388578 PMCID: PMC9650718 DOI: 10.3389/fpls.2022.1014699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Amyloids represent protein aggregates with highly ordered fibrillar structure associated with the development of various disorders in humans and animals and involved in implementation of different vital functions in all three domains of life. In prokaryotes, amyloids perform a wide repertoire of functions mostly attributed to their interactions with other organisms including interspecies interactions within bacterial communities and host-pathogen interactions. Recently, we demonstrated that free-living cells of Rhizobium leguminosarum, a nitrogen-fixing symbiont of legumes, produce RopA and RopB which form amyloid fibrils at cell surface during the stationary growth phase thus connecting amyloid formation and host-symbiont interactions. Here we focused on a more detailed analysis of the RopB amyloid state in vitro and in vivo, during the symbiotic interaction between R. leguminosarum bv. viciae with its macrosymbiont, garden pea (Pisum sativum L.). We confirmed that RopB is the bona fide amyloid protein since its fibrils exhibit circular x-ray reflections indicating its cross-β structure specific for amyloids. We found that fibrils containing RopB and exhibiting amyloid properties are formed in vivo at the surface of bacteroids of R. leguminosarum extracted from pea nodules. Moreover, using pea sym31 mutant we demonstrated that formation of extracellular RopB amyloid state occurs at different stages of bacteroid development but is enhanced in juvenile symbiosomes. Proteomic screening of potentially amyloidogenic proteins in the nodules revealed the presence of detergent-resistant aggregates of different plant and bacterial proteins including pea amyloid vicilin. We demonstrated that preformed vicilin amyloids can cross-seed RopB amyloid formation suggesting for probable interaction between bacterial and plant amyloidogenic proteins in the nodules. Taken together, we demonstrate that R. leguminosarum bacteroids produce extracellular RopB amyloids in pea nodules in vivo and these nodules also contain aggregates of pea vicilin amyloid protein, which is able to cross-seed RopB fibrillogenesis in vitro. Thus, we hypothesize that plant nodules contain a complex amyloid network consisting of plant and bacterial amyloids and probably modulating host-symbiont interactions.
Collapse
Affiliation(s)
- Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna V. Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | | | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
2
|
Zorin EA, Kliukova MS, Afonin AM, Gribchenko ES, Gordon ML, Sulima AS, Zhernakov AI, Kulaeva OA, Romanyuk DA, Kusakin PG, Tsyganova AV, Tsyganov VE, Tikhonovich IA, Zhukov VA. A variable gene family encoding nodule-specific cysteine-rich peptides in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884726. [PMID: 36186063 PMCID: PMC9515463 DOI: 10.3389/fpls.2022.884726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Emma S. Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Mikhail L. Gordon
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | | | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
3
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
4
|
Tsyganov VE, Tsyganova AV. Symbiotic Regulatory Genes Controlling Nodule Development in Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1741. [PMID: 33317178 PMCID: PMC7764586 DOI: 10.3390/plants9121741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Analyses of natural variation and the use of mutagenesis and molecular-biological approaches have revealed 50 symbiotic regulatory genes in pea (Pisum sativum L.). Studies of genomic synteny using model legumes, such as Medicago truncatula Gaertn. and Lotus japonicus (Regel) K. Larsen, have identified the sequences of 15 symbiotic regulatory genes in pea. These genes encode receptor kinases, an ion channel, a calcium/calmodulin-dependent protein kinase, transcription factors, a metal transporter, and an enzyme. This review summarizes and describes mutant alleles, their phenotypic manifestations, and the functions of all identified symbiotic regulatory genes in pea. Some examples of gene interactions are also given. In the review, all mutant alleles in genes with identified sequences are designated and still-unidentified symbiotic regulatory genes of great interest are considered. The identification of these genes will help elucidate additional components involved in infection thread growth, nodule primordium development, bacteroid differentiation and maintenance, and the autoregulation of nodulation. The significance of symbiotic mutants of pea as extremely fruitful genetic models for studying nodule development and for comparative cell biology studies of legume nodules is clearly demonstrated. Finally, it is noted that many more sequences of symbiotic regulatory genes remain to be identified. Transcriptomics approaches and genome-wide sequencing could help address this challenge.
Collapse
Affiliation(s)
- Viktor E. Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin 8, 196608 Saint Petersburg, Russia;
| | | |
Collapse
|
5
|
Bañuelos-Vazquez LA, Cazares D, Rodríguez S, Cervantes-De la Luz L, Sánchez-López R, Castellani LG, Tejerizo GT, Brom S. Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 to Endophytic Bacteria Inside Nodules. Front Microbiol 2020; 11:1752. [PMID: 32849381 PMCID: PMC7403402 DOI: 10.3389/fmicb.2020.01752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome and six large plasmids (pRet42a - pRet42f). Most of the genetic information involved in the establishment of the symbiosis is localized on plasmid pRet42d, named as the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using pSym encoded transfer genes controlled by the RctA/RctB system. Another plasmid of CFN42, pRet42a, has been shown to perform conjugative transfer not only in vitro, but also on the surface of roots and inside nodules, using other rhizobia as recipients. In addition to the rhizobia involved in the formation of nodules, these structures have been shown to contain endophytic bacteria from different genera and species. In this work, we have explored the conjugative transfer of the pSym (pRet42d) from R. etli CFN42 to endophytic bacteria as putative recipients, using as donor a CFN42 derivative labeled with GFP in the pRet42d and RFP in the chromosome. We were able to isolate some transconjugants, which inherit the GFP, but not the RFP marker. Some of them were identified, analyzed and evaluated for their ability to nodulate. We found transconjugants from genera such as Stenotrophomonas, Achromobacter, and Bacillus, among others. Although all the transconjugants carried the GFP marker, and nod, fix, and nif genes from pRet42d, not all were able to nodulate. Ultrastructure microscopy analysis showed some differences in the structure of the nodules of one of the transconjugants. A replicon of the size of pRet42d (371 Kb) could not be visualized in the transconjugants, suggesting that the pSym or a segment of the plasmid is integrated in the chromosome of the recipients. These findings strengthen the proposal that nodules constitute a propitious environment for exchange of genetic information among bacteria, in addition to their function as structures where nitrogen fixation and assimilation takes place.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Cazares
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Rodríguez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Laura Cervantes-De la Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lucas G. Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Tsyganova AV, Seliverstova EV, Brewin NJ, Tsyganov VE. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33-3 allele encoding transcription factor PsCYCLOPS/PsIPD3. PROTOPLASMA 2019; 256:1449-1453. [PMID: 31020397 DOI: 10.1007/s00709-019-01383-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pisum sativum symbiotic mutant SGEFix--2 carries the sym33-3 allele of the gene Sym33, encoding transcription factor PsCYCLOPS/PsIPD3. Previously, strong host cell defence reactions were identified in nodules of this mutant. In the present study, new manifestations of defence reactions were revealed in 28-day-old white nodules in which bacterial release had occurred. These nodules were investigated using histochemical staining of pectin and suberin and by immunogold localisation of three components of pectin: highly methyl-esterified homogalacturonan (HG) recognised by monoclonal antibody JIM7, low methyl-esterified HG recognised by JIM5 and linear (1-4)-β-D-galactan side-chain of rhamnogalacturonan I (RG I) recognised by LM5. In the mutant, but not in the wild-type, cell wall material was deposited around the vacuole in the uninfected cells, in cells containing infection threads and in the infected cells. The deposits around the vacuole were marked with JIM7 and LM5 antibodies but not with JIM5, suggesting that they contain newly formed cell wall material. Deposition was accompanied by suberin accumulation. This is the first report that deposition of cell wall material around the vacuole may be associated with the defence reaction in ineffective nodules. In addition, hypertrophic infection droplets labelled with JIM7 were identified. In the matrix of some infection threads, RG I recognised a pectic gel component. Callose deposits in the cell walls and in the walls of infection threads were occasionally observed. The observations suggest that an important function of transcriptional factor CYCLOPS/IPD3 is the suppression of defence reactions during establishment of the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Anna V Tsyganova
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608
| | - Elena V Seliverstova
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, St. Petersburg, Russia, 194223
| | | | - Viktor E Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelsky chaussee 3, St. Petersburg, Russia, 196608.
| |
Collapse
|
7
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Cervantes-De La Luz L, Girard L, Romero D, Brom S. Conjugative transfer between Rhizobium etli endosymbionts inside the root nodule. Environ Microbiol 2019; 21:3430-3441. [PMID: 31037804 DOI: 10.1111/1462-2920.14645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Since the discovery that biological nitrogen fixation ensues in nodules resulting from the interaction of rhizobia with legumes, nodules were thought to be exclusive for hosting nitrogen-fixing and plant growth promoting bacteria. In this work, we uncover a novel function of nodules, as a niche permissive to acquisition of plasmids via conjugative transfer. We used Rhizobium etli CFN42, which nodulates Phaseolus vulgaris. The genome of R. etli CFN42 contains a chromosome and six plasmids. pRet42a is a conjugative plasmid regulated by Quorum-Sensing (QS), and pRet42d is the symbiotic plasmid. Here, using confocal microscopy and flow cytometry, we show that pRet42a transfers on the root's surface, and unexpectedly, inside the nodules. Conjugation still took place inside nodules, even when it was restricted on the plant surface by placing the QS traI regulator under the promoter of the nitrogenase gene, which is only expressed inside the nodules, or by inhibiting the QS transcriptional induction of transfer genes with a traM antiactivator on an unstable vector maintained on the plant surface and lost inside the nodules. These results conclusively confirm the occurrence of conjugation in these structures, defining them as a protected environment for bacterial diversification.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura Cervantes-De La Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Tsyganova AV, Kitaeva AB, Tsyganov VE. Cell differentiation in nitrogen-fixing nodules hosting symbiosomes. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:47-57. [PMID: 32291020 DOI: 10.1071/fp16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/25/2017] [Indexed: 06/11/2023]
Abstract
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Collapse
Affiliation(s)
- Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Anna B Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Serova TA, Tikhonovich IA, Tsyganov VE. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:29-44. [PMID: 28242415 DOI: 10.1016/j.jplph.2017.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 05/13/2023]
Abstract
A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix- (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix- (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its mutant line E135F (sym13) by laser capture microdissection analysis. Finally, we analyzed ACC by immunolocalization in the nodules of both wild-type pea and their mutants. Together, the results indicate that nodule senescence is a general plant response to nodule ineffectiveness.
Collapse
Affiliation(s)
- Tatiana A Serova
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia
| | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia; Saint-Petersburg State University, Universitetskaya embankment 7-9, Saint-Petersburg, 199034, Russia
| | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia.
| |
Collapse
|
10
|
Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (Mini-review). Symbiosis 2013. [DOI: 10.1007/s13199-012-0220-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Tsyganov VE, Seliverstova EV, Voroshilova VA, Tsyganova AV, Pavlova ZB, Lebskii VK, Borisov AY, Brewin NJ, Tikhonovich IA. Double mutant analysis of sequential functioning of pea (Pisum sativum L.) genes Sym13, Sym33, and Sym40 during symbiotic nodule development. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079059711050145] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhukov VA, Shtark OY, Borisov AY, Tikhonovich IA. Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409110039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Tsyganova AV, Tsyganov VE, Findlay KC, Borisov AY, Tikhonovich IA, Brewin NJ. Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09010131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Borisov AY, Danilova TN, Koroleva TA, Kuznetsova EV, Madsen L, Mofett M, Naumkina TS, Nemankin TA, Ovchinnikova ES, Pavlova ZB, Petrova NE, Pinaev AG, Radutoiu S, Rozov SM, Rychagova TS, Shtark OY, Solovov II, Stougaard J, Tikhonovich IA, Topunov AF, Tsyganov VE, Vasil’chikov AG, Voroshilova VA, Weeden NF, Zhernakov AI, Zhukov VA. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: A review of basic and applied aspects. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807030027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|