1
|
Majidi RF, Mesgar ASM, Milan PB. Surface-modified, zinc-incorporated mesoporous silica nanoparticles with improved antibacterial and rapid hemostatic properties. Colloids Surf B Biointerfaces 2024; 243:114132. [PMID: 39094209 DOI: 10.1016/j.colsurfb.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro and in vivo assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ -14 to -43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.
Collapse
Affiliation(s)
- Raheleh Faridi Majidi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Abdorreza Sheikh-Mehdi Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Organic mesoporous silica with variable structures for pH-Stimulated antitumor drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Huang Y, Yi J, Li N, Lei M, Ma W, Zhang C. Properties and characterization of pH responsive nanoparticles based on polysaccharides from Bletilla striata as carriers in cancer therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Fu B, Tao C, Chen N, Lin JR, Zhao P. ZnO QD covalently coated, GSH/pH dual-responsive drug delivery system for chemotherapeutic/ionic synergistic therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
7
|
Sha X, Dai Y, Song X, Liu S, Zhang S, Li J. The Opportunities and Challenges of Silica Nanomaterial for Atherosclerosis. Int J Nanomedicine 2021; 16:701-714. [PMID: 33536755 PMCID: PMC7850448 DOI: 10.2147/ijn.s290537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis (AS) as the leading cause of cardiovascular and cerebrovascular events has been paid much attention all the time. With the continuous development of modern medical drug treatment, surgical treatment, interventional treatment and other methods, the mortality rate of AS has shown a downward trend, while the morbidity rate is still increasing. Oral lipid-lowering or anti-inflammatory drugs are generally used for early AS, but the relatively low accumulation efficiency in lesions and the unavoidable side effects required researchers to develop more effective drug delivery approaches for the therapy of AS. Mesoporous silica nanoparticles as nanocarrier for drug delivery have received extensive attentions due to their flexible size, high specific surface area, controlled pore volume, high drug loading capacity and excellent biocompatibility. Series of good reviews about the mesoporous silica nanoparticles loaded drugs for cancer therapy have been well documented. However, their roles as nanocarrier for drug delivery to treat AS have few reports. In this review, the applications and challenges of mesoporous silica nanomaterials in the field of the diagnosis and therapy of AS have been summarized. The classification, synthesis, formation mechanism, surface modification and functionalization of mesoporous silica nanomaterials which were closely related to the theranostic effect of AS have also been included. Last but not the least, the future prospects’ suggestions of mesoporous silica nanomaterial-based drug delivery system for AS are also provided.
Collapse
Affiliation(s)
- Xuan Sha
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yue Dai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoxi Song
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Siwen Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Mohamed Isa ED, Ahmad H, Abdul Rahman MB, Gill MR. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics 2021; 13:152. [PMID: 33498885 PMCID: PMC7911720 DOI: 10.3390/pharmaceutics13020152] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43000, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | | | - Martin R. Gill
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
9
|
Yokogawa Y, Sasada K, Hirabayashi K, Inamura S, Suyama T. Protein adsorption on spark plasma sintered 2d-, 3d- and lamellar type mesoporous silicate compacts. IET Nanobiotechnol 2020; 14:662-667. [PMID: 33108321 PMCID: PMC8676252 DOI: 10.1049/iet-nbt.2020.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/21/2022] Open
Abstract
The preparation of lamellar type mesoporous silica (MPS) compact through the spark plasma sintering (SPS) and the adsorption/desorption of protein onto MPS compact are reported to be compared with those onto 2d-hexagonal and 3d-cubic type MPS compacts. A lamellar-type MPS powder (MPS-la) was prepared using triblock copolymer, PEO5PPO68PEO5, and was compacted in a carbon die and heated at 500°C for 5 min under uniaxial pressure. The products are referred to as MPS-la-500. The MPS compacts keep the lamellar type mesoporous configuration. The adsorbed amount of protein onto MPS-la-500 was 100 mg/g, while that on MPS-la was 130 mg/g, and the former decreased by 23%. However, its decreasing ratio of the protein adsorption on MPS-la-500 was less than those of 2d-hexagonal and 3d-cubic type MPS compacts, which were 73 and 34%, respectively. The released amount of protein into PBS solution from MPS-la-500, which was soaked in the protein solution for 48 h, increased with the soaking time, while those from 2d- and 3d-type MPS compacts reached to plateau for 4 h of soaking. The lamellar type MPS compact was found to be easier to absorb and release proteins, which may be due to the large aperture of the mesoporous configuration.
Collapse
Affiliation(s)
- Yoshiyuki Yokogawa
- Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Japan.
| | - Keita Sasada
- Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Japan
| | - Koji Hirabayashi
- Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Japan
| | - Suguru Inamura
- Research Division of Applied Material Chemistry, Osaka Research Institute of Industrial Science and Technology, 7-1 Ayumino-2, Izumi-City, 594-1157, Japan
| | - Takeshi Suyama
- Research Division of Applied Material Chemistry, Osaka Research Institute of Industrial Science and Technology, 7-1 Ayumino-2, Izumi-City, 594-1157, Japan
| |
Collapse
|