1
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Zhen L, Zhu Y, Wu Z, Liao J, Deng L, Ma Q, Wu Q, Ning G, Lin Q, Zhou L, Huang Y, Zhuo Z, Chen R, Yu D. Activated hedgehog gene pattern correlates with dismal clinical outcome and tumor microenvironment heterogeneity in hepatocellular carcinoma. Heliyon 2024; 10:e26989. [PMID: 38468970 PMCID: PMC10926087 DOI: 10.1016/j.heliyon.2024.e26989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Activation of the Hedgehog signaling pathway is linked to the initiation and development of human hepatocellular carcinoma (HCC). However, its impact on clinical outcomes and the HCC microenvironment remains unclear. Methods We performed comprehensive analyses of Hedgehog pathway genes in a large cohort of HCC patients. Specifically, we utilized univariate Cox regression analysis to identify Hedgehog genes linked to overall survival, and the LASSO algorithm was used to construct a Hedgehog-related gene pattern. We subsequently examined the correlation between the Hedgehog pattern and the HCC microenvironment employing the CIBERSORT and ssGSEA algorithms. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the anti-PD-L1 treatment dataset (IMvigor210) are used to evaluate the clinical response of the Hedgehog pattern in predicting immune checkpoint inhibitors. Results We found that the Hedgehog activation score (HHAS), a prognostic score based on 11 Hedgehog genes, was significantly associated with HCC patient survival. Patients exhibiting high HHAS experienced markedly reduced survival rates compared to those with low HHAS, and HHAS emerged as an independent prognostic factor for HCC. Functional enrichment analysis unveiled the association of the HHAS phenotype with functions related to the immune system, and further investigation demonstrated that HCC patients exhibiting low HHAS displayed elevated levels of anti-tumor immune activation in CD8+ T cells, while high HHAS were linked to immune escape phenotypes and increased infiltration of immune suppressive cells. In addition, in the Immune Checkpoint Inhibitor (ICI) cohort of IMvigor210, patients with higher HHAS had worse ICI treatment outcomes and shortened survival time, indicating that the HHAS is a useful indicator for predicting patient response to immunotherapy. Conclusions In summary, our study offers valuable insights for advancing research on Hedgehog and its impact on tumor immunity, which provides an opportunity to optimize prognosis and immune therapy for HCC.
Collapse
Affiliation(s)
- Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yi Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zhen Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jinyao Liao
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Liaoyuan Deng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qianqian Ma
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Qili Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Qiuxiong Lin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Liya Zhou
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Yanjie Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Zewei Zhuo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ren Chen
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Dongnan Yu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
3
|
Ding J, Li HY, Zhang L, Zhou Y, Wu J. Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells 2021; 10:cells10010123. [PMID: 33440657 PMCID: PMC7826706 DOI: 10.3390/cells10010123] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (Hh) signaling is a classic morphogen in controlling embryonic development and tissue repairing. Aberrant activation of Hh signaling has been well documented in liver cancer, including hepatoblastoma, hepatocellular carcinoma (HCC) and cholangiocarcinoma. The present review aims to update the current understanding on how abnormal Hh signaling molecules modulate initiation, progression, drug resistance and metastasis of HCC. The latest relevant literature was reviewed with our recent findings to provide an overview regarding the molecular interplay and clinical relevance of the Hh signaling in HCC management. Hh signaling molecules are involved in the transformation of pre-carcinogenic lesions to malignant features in chronic liver injury, such as nonalcoholic steatohepatitis. Activation of GLI target genes, such as ABCC1 and TAP1, is responsible for drug resistance in hepatoma cells, with a CD133−/EpCAM− surface molecular profile, and GLI1 and truncated GLI1 account for the metastatic feature of the hepatoma cells, with upregulation of matrix metalloproteinases. A novel bioassay for the Sonic Hh ligand in tissue specimens may assist HCC diagnosis with negative α-fetoprotein and predict early microvascular invasion. In-depth exploration of the Hh signaling deepens our understanding of its molecular modulation in HCC initiation, drug sensitivity and metastasis, and guides precise management of HCC on an individual basis.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Yuan Zhou
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-215-423-7705; Fax: +86-216-422-7201
| |
Collapse
|
4
|
Jeng KS, Jeng CJ, Jeng WJ, Sheen IS, Li SY, Leu CM, Tsay YG, Chang CF. Sonic Hedgehog signaling pathway as a potential target to inhibit the progression of hepatocellular carcinoma. Oncol Lett 2019; 18:4377-4384. [PMID: 31611946 PMCID: PMC6781692 DOI: 10.3892/ol.2019.10826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. Hepatocarcinogenesis involves numerous interlinked factors and processes, including the Sonic hedgehog (Shh) signaling pathway, which participates in the carcinogenesis, progression, invasiveness, recurrence and cancer stem cell maintenance of HCC. The Shh signaling pathway is activated by ligands that bind to their receptor protein, Protein patched homolog (Ptch). The process of Shh ligand binding to Ptch weakens the inhibition of smoothened homolog (SMO) and activates signal transduction via glioma-associated oncogene homolog (Gli) transcription factors. The overexpression of Shh pathway molecules, including Shh, Ptch-1, Gli and SMO has been indicated in patients with HCC. It has also been suggested that the Shh signaling pathway exhibits cross-talk between numerous other signaling pathways. The inactivation of the Shh signaling pathway reduces HCC growth, increases radio-sensitivity and increases the beneficial effect of chemotherapy in HCC treatment. Therefore, inhibition of the Shh pathway may be an effective target therapy that can be used in the treatment of HCC.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of General Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| | - Chi-Juei Jeng
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City 10617, Taiwan, R.O.C
| | - Wen-Juei Jeng
- Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan, R.O.C
| | - I-Shyan Sheen
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei City 10617, Taiwan, R.O.C
| | - Shih-Yun Li
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei City 11221, Taiwan, R.O.C
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 11221, Taiwan, R.O.C
| | - Chiung-Fang Chang
- Department of General Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C.,Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan, R.O.C
| |
Collapse
|
5
|
β-catenin alteration is rare in hepatocellular carcinoma with steatohepatitic features: immunohistochemical and mutational study. Virchows Arch 2015; 467:535-42. [PMID: 26311355 DOI: 10.1007/s00428-015-1836-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/29/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) with steatohepatitic features (steatohepatitic HCC, SH-HCC) is a histological subset of HCC, highly associated with metabolic disease and underlying steatohepatitis. Although it has distinct clinicopathologic characteristics, little is known about the immunophenotype or genetic characteristics of SH-HCC. We conducted an immunohistochemical analysis on a tissue microarray containing 197 HCCs (70 SH-HCCs and 127 conventional HCCs (C-HCCs)), focusing on proteins associated with genetic subtypes of HCC and those associated with non-alcoholic fatty liver disease (NAFLD) or NAFLD-associated HCC. We also investigated CTNNB1 mutations in 84 HCCs (31 SH-HCCs and 53 C-HCCs) to better characterize the SH-HCC. When compared to C-HCC, SH-HCC was characterized by a significantly lower incidence of nuclear accumulation of β-catenin (5.7 vs. 25.2 %, p < 0.001) and by a lower incidence of overexpression (H-score = 300) of glutamine synthetase (4.3 vs. 26.0 %, p < 0.001). Multivariate logistic regression analysis revealed that the low rate of nuclear β-catenin accumulation in SH-HCC was independent of background etiology, including underlying steatohepatitis (p < 0.001). In accordance with the immunohistochemical results, CTNNB1 mutations were less frequent in SH-HCC than C-HCC (3.1 vs. 20.8 %, p < 0.048). Other notable findings included the ubiquitous expression of sonic hedgehog ligand in typical SH-HCC (100 %) and the less frequent expression of progenitor markers, such as SALL4 and EpCAM, in SH-HCC. These results indicate that SH-HCC as a subtype is not only characterized by morphology but also by distinct phenotypic and genetic traits.
Collapse
|
6
|
Chen S, Zhang M, Xing L, Wang Y, Xiao Y, Wu Y. HIF-1α contributes to proliferation and invasiveness of neuroblastoma cells via SHH signaling. PLoS One 2015; 10:e0121115. [PMID: 25811359 PMCID: PMC4374675 DOI: 10.1371/journal.pone.0121115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) on the proliferation, migration and invasion of neuroblastoma (NB) cells and the mechanisms involved. We here initially used the real-time polymerase chain reaction (real-time PCR), Western blotting and immunohistochemistry (IHC) to detect the expression of HIF-1α and components of the sonic hedgehog (SHH) signaling pathway in NB cells and human specimens. Subsequently, cell proliferation, migration and invasion were analyzed using the cell counting assay, wound healing assay and Transwell system in two types of human NB cell lines, SH-SY5Y and IMR32. In addition, the role of HIF-1α in NB cells growth was determined in a xenograft nude mouse model. We found that the level of HIF-1α was significantly upregulated during NB progression and was associated with the expression of two components of SHH signaling, SHH and GLI1. We next indicated that the proliferation, migration and invasiveness of SH-SY5Y and IMR32 cells were significantly inhibited by HIF-1α knockdown, which was mediated by small interfering RNAs (siRNAs) targeting against its mRNA. Furthermore, the growth of NB cells in vivo was also suppressed by HIF-1α inhibition. Finally, the pro-migration and proliferative effects of HIF-1α could be reversed by disrupting SHH signaling. In conclusion, our results demonstrated that upregulation of HIF-1α in NB promotes proliferation, migration and invasiveness via SHH signaling.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Zhang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lili Xing
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yue Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongtao Xiao
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|