1
|
Schörner M, Bethkenhagen M, Döppner T, Kraus D, Fletcher LB, Glenzer SH, Redmer R. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Phys Rev E 2023; 107:065207. [PMID: 37464593 DOI: 10.1103/physreve.107.065207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 07/20/2023]
Abstract
We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with traditional analytic models at small scattering angles.
Collapse
Affiliation(s)
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tilo Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Dominik Kraus
- University of Rostock, Institute of Physics, 18051 Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Luke B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Ronald Redmer
- University of Rostock, Institute of Physics, 18051 Rostock, Germany
| |
Collapse
|
2
|
Shaffer NR, Starrett CE. Correlations between conduction electrons in dense plasmas. Phys Rev E 2020; 101:013208. [PMID: 32069618 DOI: 10.1103/physreve.101.013208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 11/07/2022]
Abstract
Most treatments of electron-electron correlations in dense plasmas either ignore them entirely (random phase approximation) or neglect the role of ions (jellium approximation). In this work, we go beyond both these approximations to derive a formula for the electron-electron static structure factor which properly accounts for the contributions of both ionic structure and quantum-mechanical dynamic response in the electrons. The result can be viewed as a natural extension of the quantum Ornstein-Zernike theory of ionic and electronic correlations, and it is suitable for dense plasmas in which the ions are classical and the conduction electrons are quantum-mechanical. The corresponding electron-electron pair distribution functions are compared with the results of path integral Monte Carlo simulations, showing good agreement whenever no strong electron resonance states are present. We construct approximate potentials of mean force which describe the effective screened interaction between electrons. Significant deviations from Debye-Hückel screening are present at temperatures and densities relevant to high-energy density experiments involving warm and hot dense plasmas. The presence of correlations between conduction electrons is likely to influence the electron-electron contribution to the electrical and thermal conductivity. It is expected that excitation processes involving the conduction electrons (e.g., free-free absorption) will also be affected.
Collapse
Affiliation(s)
- Nathaniel R Shaffer
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Charles E Starrett
- Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
3
|
Mo C, Fu Z, Kang W, Zhang P, He XT. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 120:205002. [PMID: 29864337 DOI: 10.1103/physrevlett.120.205002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.
Collapse
Affiliation(s)
- Chongjie Mo
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| | - Zhenguo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Zhang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - X T He
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Veysman M, Röpke G, Winkel M, Reinholz H. Optical conductivity of warm dense matter within a wide frequency range using quantum statistical and kinetic approaches. Phys Rev E 2016; 94:013203. [PMID: 27575226 DOI: 10.1103/physreve.94.013203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 06/06/2023]
Abstract
Fundamental properties of warm dense matter are described by the dielectric function, which gives access to the frequency-dependent electrical conductivity; absorption, emission, and scattering of radiation; charged particles stopping; and further macroscopic properties. Different approaches to the dielectric function and the related dynamical collision frequency are compared in a wide frequency range. The high-frequency limit describing inverse bremsstrahlung and the low-frequency limit of the dc conductivity are considered. Sum rules and Kramers-Kronig relation are checked for the generalized linear response theory and the standard approach following kinetic theory. The results are discussed in application to aluminum, xenon, and argon plasmas.
Collapse
Affiliation(s)
- M Veysman
- Joint Institute for High Temperatures (JIHT) RAS, Izhorskaya 13/19, Moscow 125412, Russia
| | - G Röpke
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany
- National Research Nuclear University (MEPhI), 115409 Moscow, Russia
| | - M Winkel
- Institute for Advanced Simulation, Juelich Supercomputing Centre, Forschungszentrum, Juelich GmbH, 52425 Juelich, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
| | - H Reinholz
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany
- The University of Western Australia, School of Physics, Crawley, Western Australia 6009, Australia
| |
Collapse
|
5
|
Johnson WR, Nilsen J. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter. Phys Rev E 2016; 93:033205. [PMID: 27078473 DOI: 10.1103/physreve.93.033205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/07/2022]
Abstract
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Collapse
Affiliation(s)
- W R Johnson
- Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - J Nilsen
- Lawrence Livermore National Laboratory,PO Box 808, Livermore, California 94551, USA
| |
Collapse
|
6
|
|
7
|
Sperling P, Gamboa EJ, Lee HJ, Chung HK, Galtier E, Omarbakiyeva Y, Reinholz H, Röpke G, Zastrau U, Hastings J, Fletcher LB, Glenzer SH. Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter. PHYSICAL REVIEW LETTERS 2015; 115:115001. [PMID: 26406836 DOI: 10.1103/physrevlett.115.115001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 06/05/2023]
Abstract
We present the first highly resolved measurements of the plasmon spectrum in an ultrafast heated solid. Multi-keV x-ray photons from the Linac Coherent Light Source have been focused to one micrometer diameter focal spots producing solid density aluminum plasmas with a known electron density of n_{e}=1.8×10^{23} cm^{-3}. Detailed balance is observed through the intensity ratio of up- and down-shifted plasmons in x-ray forward scattering spectra measuring the electron temperature. The plasmon damping is treated by electron-ion collision models beyond the Born approximation to determine the electrical conductivity of warm dense aluminum.
Collapse
Affiliation(s)
- P Sperling
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - E J Gamboa
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| | - H K Chung
- Nuclear Data Section, Division of Physical and Chemical Sciences, International Atomic Energy Agency, A-1400 Vienna, Austria
| | - E Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| | - Y Omarbakiyeva
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
- International IT University, 050040 Almaty, Kazakhstan
| | - H Reinholz
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
- University of Western Australia, WA 6009 Crawley, Australia
| | - G Röpke
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - U Zastrau
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - J Hastings
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72 Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Reinholz H, Röpke G, Rosmej S, Redmer R. Conductivity of warm dense matter including electron-electron collisions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:043105. [PMID: 25974600 DOI: 10.1103/physreve.91.043105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 06/04/2023]
Abstract
We present an approach that can resolve the controversy with respect to the role of electron-electron collisions in calculating the dynamic conductivity of dense plasmas. In particular, the dc conductivity is analyzed in the low-density, nondegenerate limit where the Spitzer theory is valid and electron-electron collisions lead to the well-known reduction in comparison to the result considering only electron-ion collisions (Lorentz model). With increasing degeneracy, the contribution of electron-electron collisions to the dc conductivity is decreasing and can be neglected for the liquid metal domain where the Ziman theory is applicable. We give expressions for the effect of electron-electron collisions in calculating the conductivity in the warm dense matter region, i.e., for strongly coupled Coulomb systems at arbitrary degeneracy.
Collapse
Affiliation(s)
- H Reinholz
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany and University of Western Australia School of Physics, WA 6009 Crawley, Australia
| | - G Röpke
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany
| | - S Rosmej
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany
| | - R Redmer
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany
| |
Collapse
|
9
|
Reinholz H, Röpke G. Dielectric function beyond the random-phase approximation: kinetic theory versus linear response theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:036401. [PMID: 22587190 DOI: 10.1103/physreve.85.036401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Calculating the frequency-dependent dielectric function for strongly coupled plasmas, the relations within kinetic theory and linear response theory are derived and discussed in comparison. In this context, we give a proof that the Kohler variational principle can be extended to arbitrary frequencies. It is shown to be a special case of the Zubarev method for the construction of a nonequilibrium statistical operator from the principle of the extremum of entropy production. Within kinetic theory, the commonly used energy-dependent relaxation time approach is strictly valid only for the Lorentz plasma in the static case. It is compared with the result from linear response theory that includes electron-electron interactions and applies for arbitrary frequencies, including bremsstrahlung emission. It is shown how a general approach to linear response encompasses the different approximations and opens options for systematic improvements.
Collapse
Affiliation(s)
- H Reinholz
- Universität Rostock, Institut für Physik, 18051 Rostock, Germany.
| | | |
Collapse
|
10
|
Raitza T, Röpke G, Reinholz H, Morozov I. Spatially resolved dynamic structure factor of finite systems from molecular dynamics simulations. Phys Rev E 2011; 84:036406. [PMID: 22060512 DOI: 10.1103/physreve.84.036406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 11/07/2022]
Abstract
The dynamical response of metallic clusters up to 10(3) atoms is investigated using the restricted molecular dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy, and the width of the eigenmodes have been investigated for various values of electron density, temperature, cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of collective excitations is discussed.
Collapse
Affiliation(s)
- Thomas Raitza
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany.
| | | | | | | |
Collapse
|