1
|
Brighenti AF, de Freitas FR, Malohlava ITC, Votre TCG, Voltolini JA, da Silva AL, Feldberg NP, Würz DA. Biostimulants and indolebutyric acid improve rooting of wood cuttings from different grapevine rootstocks. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv202338011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The rooting of rootstocks is considered a critical point in the production of high-quality grapevine planting material. To maximize the cutting rhizogenesis process, plant hormones, such as auxins, are used for the development of adventitious roots. In addition, some groups of biostimulant have as their main role the development of root system, ensuring good growth of the plant aerial part. However, research using algae extract-based biostimulants in vegetative propagation of vine rootstocks is scarce. In this sense, the objective of this work was to evaluate the use of the biostimulant based on algae extract and indolebutyric acid (IBA), in the development of the root system and vegetative growth of grapevine rootstocks. The rootstocks evaluated were ‘3309 C’, ‘101-14 Mgt’, ‘Paulsen 1103’, ‘99 R’, ‘110 R’, ‘Kober 5BB’, ‘SO4’, ‘420A Mgt’, ‘Solferino’, ‘Gravesac’, ‘IAC 572’, ‘IAC 766’, ‘IAC 313’, ‘Harmony’, ‘Freedom’, ‘Salt Creek’ and ‘VR 043- 43’. The experimental design was completely randomized with four replications, arranged in a factorial scheme, involving 17 rootstocks associated with four treatments to stimulate rooting (IBA, algae extract, IBA + algae extract and control). The use of indolebutyric acid and algae extract-based biostimulant proved to be efficient in rooting woody cuttings from different vine rootstocks. The use of IBA, algae extract-based biostimulant and IBA combined with algae extract resulted in higher rates of rooting and development than the control. The rootstocks presenting the highest rooting rates and vegetative development were ‘IAC 572’ and ‘Freedom’. ‘Gravesac’, ‘101-14 Mgt’ and ‘99 R’, showing high rates of rooting and root development, but low vegetative development. The rootstocks exhibiting the lowest rooting rates and vegetative development were ‘Salt Creek’, ‘VR 043-43’ and ‘110 R’.
Collapse
|
2
|
Soares B, Barbosa C, Oliveira MJ. Chitosan application towards the improvement of grapevine performance and wine quality. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intensification of agrochemicals application in vineyards has raised several concerns in Viticulture and Oenology value chain. Efforts have been developed to optimize grapevine health and productivity, assuring that viticulture is sustainable and competitive in today’s wine market. Viticulture practices have constantly been improved for a more sustainable and environment-friendly production, reducing the application of agrochemicals, replacing them by natural compounds that can have a double effect: protect grapevine against pathogens and improve compounds related to grape organoleptic quality. In this context, the development and optimization of alternative strategies to improve and enhance plant defences and grape/wine quality is becoming a necessity. Since the 1980s, chitosan has become a compound of special interest due to its double effect as elicitor and grapevine biostimulant, representing a complement to soil fertilisation, and reducing the negative effects nutrients leaching into the groundwater. The present review aims to present the wide possibilities of chitosan applications on grapevines to prevent and combat the main diseases and to improve wine quality. In this way, relevant studies about chitosan application will be presented as well as some concerns and limitations in order to cover the knowledge gaps inherent to its application in vineyard and wine as well.
Collapse
|
3
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|
5
|
Cunha J, Caldeira I, Canas S. New insights into Viticulture, Enology and Vitivinicultural Economy: Ciência e Técnica Vitivinícola 2021. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2021. [DOI: 10.1051/ctv/ctv20213602173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
New insights into Viticulture, Enology and Vitivinicultural Economy arise from the fourteen articles published by the Ciência e Técnica Vitivinícola in 2021. Research carried out by several international teams covered a wide range of topics that seek to respond to current main challenges: chemical, morphological and anatomical features of the grapevine cultivars explored to withstand biotic and abiotic stresses; seaweed foliar application to grapevines as an innovative and integrated vineyard management technique; nutritional management of grapevine cultivars under cold climate conditions and under water constraint scenarios; viability and cost-effectiveness of photovoltaic solar energy for wineries; viticultural technologies and the food safety of wine; characterization of grapes and methods for juice production; chemical composition of grape seeds; development of analytical and sensory methodologies; portrait of the wine spirits sector in Portugal and its recent evolution.
Collapse
|