1
|
Diop S, Ollé A, Roquin N, Chorel M, Lavastre É, Gallais L, Bonod N, Lamaignère L. Investigation of the influence of a spatial beam profile on laser damage growth dynamics in multilayer dielectric mirrors in the near infrared sub-picosecond regime. OPTICS EXPRESS 2022; 30:17739-17753. [PMID: 36221589 DOI: 10.1364/oe.456120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 06/16/2023]
Abstract
Laser-induced damage growth has often been studied with Gaussian beams in the sub-picosecond regime. However, beams generated by high-power laser facilities do not feature Gaussian profiles, a property that raises questions concerning the reliability of off-line laser-induced damage measurements. Here, we compare laser-induced damage growth dynamics as a function of beam profiles. Experiments on multilayer dielectric mirrors at 1053 nm have been carried out with squared top-hat and Gaussian beams. The results demonstrate that the laser-induced damage growth threshold does not depend on the incident beam profile. A higher damage growth rate, however, has been measured with the top-hat beam. In addition, three different regimes in the growth dynamics were identified above a given fluence. A numerical model has been developed to simulate a complete damage growth sequence for different beam profiles. The numerical results are in good agreement with the observations, three growth regimes were also revealed. These results demonstrate that a linear description of growth cannot be used for the whole growth domain.
Collapse
|
2
|
Denoeud A, Hernandez JA, Vinci T, Benuzzi-Mounaix A, Brygoo S, Berlioux A, Lefevre F, Sollier A, Videau L, Ravasio A, Guarguaglini M, Duthoit L, Loison D, Brambrink E. X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013902. [PMID: 33514214 DOI: 10.1063/5.0020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
An ultrafast x-ray powder diffraction setup for laser-driven dynamic compression has been developed at the LULI2000 laser facility. X-ray diffraction is performed in reflection geometry from a quasi-monochromatic laser-generated plasma x-ray source. In comparison to a transmission geometry setup, this configuration allows us to probe only a small portion of the compressed sample, as well as to shield the detectors against the x-rays generated by the laser-plasma interaction on the front side of the target. Thus, this new platform facilitates probing of spatially and temporarily uniform thermodynamic conditions and enables us to study samples of a large range of atomic numbers, thicknesses, and compression dynamics. As a proof-of-concept, we report direct structural measurements of the bcc-hcp transition both in shock and ramp-compressed polycrystalline iron with diffraction signals recorded between 2θ ∼ 30° and ∼150°. In parallel, the pressure and temperature history of probed samples is measured by rear-side visible diagnostics (velocimetry and pyrometry).
Collapse
Affiliation(s)
- A Denoeud
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - J-A Hernandez
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - S Brygoo
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Berlioux
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - F Lefevre
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Sollier
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - L Videau
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Ravasio
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - M Guarguaglini
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - L Duthoit
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - D Loison
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - E Brambrink
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
3
|
Ducret JE, Batani D, Boutoux G, Chancé A, Gastineau B, Guillard JC, Harrault F, Jakubowska K, Lantuejoul-Thfoin I, Leboeuf D, Loiseau D, Lotode A, Pès C, Rabhi N, Saïd A, Semsoum A, Serani L, Thomas B, Toussaint JC, Vauzour B. Calibration of the low-energy channel Thomson parabola of the LMJ-PETAL diagnostic SEPAGE with protons and carbon ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:023304. [PMID: 29495838 DOI: 10.1063/1.5009737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12C6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12C6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10-3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.
Collapse
Affiliation(s)
- J-E Ducret
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - D Batani
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - G Boutoux
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - A Chancé
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - B Gastineau
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - J-C Guillard
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - F Harrault
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - K Jakubowska
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | | | - D Leboeuf
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - D Loiseau
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - A Lotode
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - C Pès
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - N Rabhi
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - A Saïd
- Institut de Physique Nucléaire d'Orsay, 15 rue Georges Clémenceau, F-91405 Orsay cedex, France
| | - A Semsoum
- Institut de Physique Nucléaire d'Orsay, 15 rue Georges Clémenceau, F-91405 Orsay cedex, France
| | - L Serani
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, UMR 5797 CNRS/IN2P3, Gradignan 33175, France
| | - B Thomas
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, UMR 5797 CNRS/IN2P3, Gradignan 33175, France
| | - J-C Toussaint
- IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - B Vauzour
- CEA DAM DIF, F-91297 Arpajon, France
| |
Collapse
|
4
|
Coïc H, Airiau JP, Blanchot N, Bordenave E, Rouyer C. Modeling of the petawatt PETAL laser chain using Miró code. APPLIED OPTICS 2017; 56:9491-9501. [PMID: 29216063 DOI: 10.1364/ao.56.009491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Miró software has been used intensively to simulate the Laser Megajoule (LMJ) with the treatment of amplification, frequency conversion, and both temporal/spatial smoothing of the beam for nanosecond pulses. We show that the software is able to model most relevant aspects of the petawatt PETAL laser chain in the subpicosecond regime, from the front-end to the focal spot with a broadband treatment of the amplification and compression stages, including chromatism compensation in the laser chain, segmentation and recombination of the beams on the second compression stage, and focusing by an off-axis parabola.
Collapse
|
5
|
Rabhi N, Bohacek K, Batani D, Boutoux G, Ducret JE, Guillaume E, Jakubowska K, Thaury C, Thfoin I. Calibration of imaging plates to electrons between 40 and 180 MeV. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:053306. [PMID: 27250413 DOI: 10.1063/1.4950860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d'Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.
Collapse
Affiliation(s)
- N Rabhi
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - K Bohacek
- ELI Beamlines, Institute of Physics ASCR, Prague, Czech Republic
| | - D Batani
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - G Boutoux
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - J-E Ducret
- CELIA (Centre Lasers Intenses et Applications), Université Bordeaux, CNRS, CEA, UMR 5107, F-33405 Talence, France
| | - E Guillaume
- LOA, ENSTA ParisTech, École Polytechnique, Université Paris-Saclay, CNRS, 91762 Palaiseau, France
| | - K Jakubowska
- Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw, Poland
| | - C Thaury
- LOA, ENSTA ParisTech, École Polytechnique, Université Paris-Saclay, CNRS, 91762 Palaiseau, France
| | - I Thfoin
- CEA DAM DIF, F-91297 Arpajon, France
| |
Collapse
|
6
|
Boutoux G, Batani D, Burgy F, Ducret JE, Forestier-Colleoni P, Hulin S, Rabhi N, Duval A, Lecherbourg L, Reverdin C, Jakubowska K, Szabo CI, Bastiani-Ceccotti S, Consoli F, Curcio A, De Angelis R, Ingenito F, Baggio J, Raffestin D. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser". THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:043108. [PMID: 27131655 DOI: 10.1063/1.4944863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.
Collapse
Affiliation(s)
- G Boutoux
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - D Batani
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - F Burgy
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - J-E Ducret
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - P Forestier-Colleoni
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - S Hulin
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - N Rabhi
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - A Duval
- CEA DAM DIF, F-91297 Arpajon, France
| | | | | | - K Jakubowska
- Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw, Poland
| | - C I Szabo
- Theiss Research, 7411 Eads Avenue, La Jolla, California 92037, USA
| | | | - F Consoli
- ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Rome, Italy
| | - A Curcio
- ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Rome, Italy
| | - R De Angelis
- ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Rome, Italy
| | - F Ingenito
- ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Rome, Italy
| | - J Baggio
- CEA DAM CESTA, BP 12, F-33405 Le Barp, France
| | - D Raffestin
- CEA DAM CESTA, BP 12, F-33405 Le Barp, France
| |
Collapse
|
7
|
Boutoux G, Rabhi N, Batani D, Binet A, Ducret JE, Jakubowska K, Nègre JP, Reverdin C, Thfoin I. Study of imaging plate detector sensitivity to 5-18 MeV electrons. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:113304. [PMID: 26628126 DOI: 10.1063/1.4936141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.
Collapse
Affiliation(s)
- G Boutoux
- Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - N Rabhi
- Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - D Batani
- Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - A Binet
- CEA DAM DIF, F-91297 Arpajon, France
| | - J-E Ducret
- Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - K Jakubowska
- Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw, Poland
| | - J-P Nègre
- CEA DAM DIF, F-91297 Arpajon, France
| | | | - I Thfoin
- CEA DAM DIF, F-91297 Arpajon, France
| |
Collapse
|