1
|
Zhang H, Lv J, Ma Z, Ma J, Chen J. Advances in Antimicrobial Peptides: Mechanisms, Design Innovations, and Biomedical Potential. Molecules 2025; 30:1529. [PMID: 40286095 PMCID: PMC11990784 DOI: 10.3390/molecules30071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including antibacterial, antiviral, and antifungal effects, and are vital components of the innate immune system. Due to their non-specific membrane-disrupting mechanism, AMPs are emerging as effective candidates for novel anti-infective agents. The integration of AMPs with biomaterials, such as nanoparticles, liposomes, polymers, and hydrogels, enhances their stability and efficacy while offering multifunctional therapeutic benefits. These combinations promote diverse antibacterial mechanisms, including membrane disruption, intracellular metabolic interference, cell wall modulation, and immune system activation. Despite challenges, such as toxicity, stability, and resistance, innovative strategies including computer-aided design and structural modification show promise in optimizing AMPs' activity, targeting precision, and biocompatibility. The potential for AMPs in clinical applications remains highly promising, with significant opportunities for overcoming antimicrobial resistance through novel AMP-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Junfeng Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| | - Jing Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (H.Z.); (J.L.); (Z.M.)
| |
Collapse
|
2
|
Chehelgerdi M, Heidarnia F, Dehkordi FB, Chehelgerdi M, Khayati S, Khorramian-Ghahfarokhi M, Kabiri-Samani S, Kabiri H. Immunoinformatic prediction of potential immunodominant epitopes from cagW in order to investigate protection against Helicobacter pylori infection based on experimental consequences. Funct Integr Genomics 2023; 23:107. [PMID: 36988775 PMCID: PMC10049908 DOI: 10.1007/s10142-023-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Helicobacter pylori is a leading cause of stomach cancer and peptic ulcers. Thus, identifying epitopes in H. pylori antigens is important for disease etiology, immunological surveillance, enhancing early detection tests, and developing optimal epitope-based vaccines. We used immunoinformatic and computational methods to create a potential CagW epitope candidate for H. pylori protection. The cagW gene of H. pylori was amplified and cloned into pcDNA3.1 (+) for injection into the muscles of healthy BALB/c mice to assess the impact of the DNA vaccine on interleukin levels. The results will be compared to a control group of mice that received PBS or cagW-pcDNA3.1 (+) vaccinations. An analysis of CagW protein antigens revealed 8 CTL and 7 HTL epitopes linked with AYY and GPGPG, which were enhanced by adding B-defensins to the N-terminus. The vaccine's immunogenicity, allergenicity, and physiochemistry were validated, and its strong activation of TLRs (1, 2, 3, 4, and 10) suggests it is antigenic. An in-silico cloning and immune response model confirmed the vaccine's expression efficiency and predicted its impact on the immune system. An immunofluorescence experiment showed stable and bioactive cagW gene expression in HDF cells after cloning the whole genome into pcDNA3.1 (+). In vivo vaccination showed that pcDNA3.1 (+)-cagW-immunized mice had stronger immune responses and a longer plasmid DNA release window than control-plasmid-immunized mice. After that, bioinformatics methods predicted, developed, and validated the three-dimensional structure. Many online services docked it with Toll-like receptors. The vaccine was refined using allergenicity, antigenicity, solubility, physicochemical properties, and molecular docking scores. Virtual-reality immune system simulations showed an impressive reaction. Codon optimization and in-silico cloning produced E. coli-expressed vaccines. This study suggests a CagW epitopes-protected H. pylori infection. These studies show that the proposed immunization may elicit particular immune responses against H. pylori, but laboratory confirmation is needed to verify its safety and immunogenicity.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Fatemeh Heidarnia
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran.
| | - Shahoo Khayati
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saber Kabiri-Samani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd., Research and Development Center for Biotechnology, Shahrekord, Iran
| |
Collapse
|