1
|
Zhou RP, Lin SJ, Wan WB, Zuo HL, Yao FF, Ruan HB, Xu J, Song W, Zhou YC, Wen SY, Dai JH, Zhu ML, Luo J. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats. PLoS One 2016; 11:e0166751. [PMID: 28033335 PMCID: PMC5199056 DOI: 10.1371/journal.pone.0166751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Cortex Eucommiae is used worldwide in traditional medicine, various constituents of Cortex Eucommiae, such as chlorogenic acid (CGA), has been reported to exert anti-osteoporosis activity in China, but the mechanism about their contribution to the overall activity is limited. The aims of this study were to determine whether chlorogenic acid can prevent estrogen deficiency-induced osteoporosis and to analyze the mechanism of CGA bioactivity. The effect of CGA on estrogen deficiency-induced osteoporosis was performed in vivo. Sixty female Sprague-Dawley rats were divided randomly among a sham-operated group and five ovariectomy (OVX) plus treatment subgroups: saline vehicle, 17α-ethinylestradiol (E2), or CGA at 9, 27, or 45 mg/kg/d. The rats’ femoral metaphyses were evaluated by micro-computed tomography (μCT). The mechanism of CGA bioactivity was investigated in vitro. Bone mesenchymal stem cells (BMSCs) were treated with CGA, with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002. BMSCs proliferation and osteoblast differentiation were assessed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase, with or without Shp2 interfering RNA (RNAi). The results display that CGA at 27 and 45 mg/kg/day inhibited the decrease of bone mineral density (BMD) that induced by OVX in femur (p< 0.01), significantly promoted the levels of bone turnover markers, and prevented bone volume fraction (BV/TV), connectivity density (CoonD), trabecular number (Tb.N), trabecular thickness (Tb.Th) (all p< 0.01) to decrease and prevented the trabecular separation (Tb.Sp), structure model index (SMI)(both p< 0.01) to increase. CGA at 1 or 10 μM enhanced BMSC proliferation in a dose-dependent manner. CGA at 0.1 to 10 μM increased phosphorylated Akt (p-Akt) and cyclin D1. These effects were reversed by LY294002. CGA at 1 or 10 μM increased BMSC differentiation to osteoblasts (p< 0.01), Shp2 RNAi suppressed CGA-induced osteoblast differentiation by decreasing Shp2, p-Akt, and cyclin D1. This study found that CGA improved the BMD and trabecular micro-architecture for the OVX-induced osteoporosis. Therefore, CGA might be an effective alternative treatment for postmenopausal osteoporosis. CGA promoted proliferation of osteoblast precursors and osteoblastic differentiation of BMSCs via the Shp2/PI3K/Akt/cyclin D1 pathway.
Collapse
Affiliation(s)
- Rong Ping Zhou
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of JiangXi, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
- * E-mail: (JL); (RPZ)
| | - Si Jian Lin
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of JiangXi, NanChang, JiangXi, China
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
| | - Wen Bing Wan
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Hui Ling Zuo
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
| | - Fen Fen Yao
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
| | - Hui Bing Ruan
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Jin Xu
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Wei Song
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Yi Cheng Zhou
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Shi Yao Wen
- Orthopaedic Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
| | - Jiang Hua Dai
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of JiangXi, NanChang, JiangXi, China
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
| | - Mei Lan Zhu
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of JiangXi, NanChang, JiangXi, China
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
| | - Jun Luo
- Regeneration and Rehabilitation Engineering Research Institute on Bone and Nerve of JiangXi, NanChang, JiangXi, China
- Orthopaedics Research Institute of Jiangxi, NanChuang University, NanChang, JiangXi, China
- Rehabilitation Department, The Second Affiliated Hospital of NanChang University, NanChang, JiangXi, China
- * E-mail: (JL); (RPZ)
| |
Collapse
|
2
|
de Oliveira MS, Betting LE, Mory SB, Cendes F, Castellano G. Texture analysis of magnetic resonance images of patients with juvenile myoclonic epilepsy. Epilepsy Behav 2013; 27:22-8. [PMID: 23357730 DOI: 10.1016/j.yebeh.2012.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/19/2012] [Accepted: 12/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND/PURPOSE Juvenile myoclonic epilepsy (JME) is the most frequent subsyndrome of the idiopathic generalized epilepsies, and experimental investigations support that the thalamus is a key structure in the mechanisms of JME. Texture analysis (TA) is an image processing technique which can be used to characterize images such as MRI. OBJECTIVE The goal of this work was to investigate the thalamus of patients with JME using TA, a quantitative neuroimaging technique. METHODS Patients and controls were submitted to MRI investigation. Images were acquired in a 2-Tesla scanner. The T1 volumetric sequence was used for thalamic segmentation and extraction of texture parameters. Twenty-four patients with a diagnosis of JME and 20 healthy volunteers were investigated. RESULTS Texture analysis revealed differences between the right thalamus of patients and controls. CONCLUSIONS The present investigation supports the participation of the thalamus in the disease mechanisms of JME. Texture analysis may be a useful tool in the quantitative neuroimaging investigation of the epilepsies and can be important to understand JME.
Collapse
|
3
|
de Oliveira MS, Balthazar MLF, D'Abreu A, Yasuda CL, Damasceno BP, Cendes F, Castellano G. MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. AJNR Am J Neuroradiol 2011; 32:60-6. [PMID: 20966061 DOI: 10.3174/ajnr.a2232] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE TA is a branch of image processing that seeks to reduce image information by extracting texture descriptors from the image. TA of MR images of anatomic structures in mild AD and aMCI is not well-studied. Our objective was to attempt to find differences among patients with aMCI and mild AD and normal-aging subjects, by using TA applied to the MR images of the CC and the thalami of these groups of subjects. MATERIALS AND METHODS TA was applied to the MR images of 17 patients with aMCI, 16 patients with mild AD, and 16 normal-aging subjects. The TA approach was based on the GLCM. MR images were T1-weighted and were obtained in the sagittal and axial planes. The CC and thalami were manually segmented for each subject, and 44 texture parameters were computed for each of these structures. RESULTS TA parameters showed differences among the 3 groups for the CC and thalamus. A pair-wise comparison among groups showed differences for AD-control and aMCI-AD for the CC; and for AD-control, aMCI-AD, and aMCI-control for the thalamus. CONCLUSIONS TA is a useful technique to aid in the detection of tissue alterations in MR images of mild AD and aMCI and has the potential to become a helpful tool in the diagnosis and understanding of these pathologies.
Collapse
Affiliation(s)
- M S de Oliveira
- Department of Cosmic Rays and Chronology, Institute of Physics Gleb Wataghin, University of Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|