1
|
Shi T, Chen B. Association between Ambient Illumination and Cognitive Impairment: A Population-Based Study of Older. Behav Neurol 2023; 2023:4131377. [PMID: 37077583 PMCID: PMC10110376 DOI: 10.1155/2023/4131377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023] Open
Abstract
It is well-established that light therapy can alleviate cognitive impairment, and ambient illumination (AI) can quantify the amount of exposure to light. However, the relationship between AI and cognitive impairment has been largely understudied. Objectives. We aimed to examine the cross-sectional associations between AI and impaired cognition using data from the National Health and Nutrition Examination Survey (NHANES) (2011-2013) database. Methods. The correlation between AI and cognitive impairment was analyzed using multivariate logistic regression models. Nonlinear correlations were explored using curve fitting. Results. Multivariate logistic regression yielded an OR of 0.872 (95% CI 0.699, 1.088) for the association between AI and cognitive impairment after adjusting for covariates. Smooth curve fitting showed that the correlation was nonlinear, with an inflection point at 1.22. Conclusions. These results suggested that the level of AI may be linked to cognitive impairment. We found a nonlinear relationship of AI with cognitive impairment.
Collapse
Affiliation(s)
- Tieyi Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baozhong Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Daneault V, Dumont M, Massé É, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol 2016; 35:9. [PMID: 26980095 PMCID: PMC4791759 DOI: 10.1186/s40101-016-0091-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.
Collapse
Affiliation(s)
- V Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada. .,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada. .,Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - M Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - É Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - G Vandewalle
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - J Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|