1
|
Lan Y, Ji Y, Peng X, Duan W, Geng M, Ai J, Zhang H. Discovery and optimization of 3-(indolin-5-yloxy)pyridin-2-amine derivatives as potent necroptosis inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400302. [PMID: 38955770 DOI: 10.1002/ardp.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.
Collapse
Affiliation(s)
- Yaohan Lan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinchun Ji
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Xia Peng
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Meiyu Geng
- University of Chinese Academy of Sciences, Beijing, China
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jing Ai
- University of Chinese Academy of Sciences, Beijing, China
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Hefeng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev 2024; 23:103611. [PMID: 39209014 DOI: 10.1016/j.autrev.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
Collapse
Affiliation(s)
| | - Synda Boumediene
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America
| | - Gabriel J Tobón
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America; Department of Internal Medicine, Division of Rheumatology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America.
| |
Collapse
|
3
|
El Masri H, Hollingworth SA, van Driel M, Benham H, McGuire TM. Real-world questions and concerns about disease-modifying antirheumatic drugs (DMARDs): a retrospective analysis of questions to a medicine call center. BMC Rheumatol 2020; 4:27. [PMID: 32550294 PMCID: PMC7296694 DOI: 10.1186/s41927-020-00126-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Disease-modifying antirheumatic drugs (DMARDs) have transformed the treatment of numerous autoimmune and inflammatory diseases but their perceived risk of harm may be a barrier to use. Methods In a retrospective mixed-methods study, we analysed conventional (c) and biologic (b) DMARDs-related calls and compared them with rest of calls (ROC) from consumers to an Australian national medicine call center operated by clinical pharmacists from September 2002 to June 2010. This includes the period where bDMARDs became available on the Pharmaceutical Benefits Scheme, the government-subsidized prescription medicines formulary. We compared caller and patient demographics, enquiry types and motivation to information-seek for both cDMARDs and bDMARDs with ROC, using a t-test for continuous data and a chi-square test for categorical data. We explored call narratives to identify common themes. Results There were 1547 calls involving at least one DMARD. The top three cDMARD enquiry types were side effects (27.2%), interactions (21.9%), and risk versus benefit (11.7%). For bDMARDs, the most common queries involved availability and subsidized access (18%), mechanism and profile (15.8%), and side effects (15.1%). The main consumer motivations to information-seek were largely independent of medicines type and included: inadequate information (44%), wanting a second opinion (23.6%), concern about a worrying symptom (18.8%), conflicting information (6.9%), or information overload (2.3%). Question themes common to conventional and biological DMARDs were caller overemphasis on medication risk and the need for reassurance. Callers seeking information about bDMARDs generally overestimated effectiveness and focused their attention on availability, cost, storage, and medicine handling. Conclusion Consumers have considerable uncertainty regarding DMARDs and may overemphasise risk. Patients cautiously assess the benefits and risks of their DMARDs but when new treatments emerge, they tend to overestimate their effectiveness.
Collapse
Affiliation(s)
- Hiba El Masri
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102 Australia
| | - Samantha A Hollingworth
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102 Australia
| | - Mieke van Driel
- Primary Care Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Helen Benham
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland Australia.,Department of Rheumatology, Princess Alexandra Hospital, Brisbane, QLD 4102 Australia
| | - Treasure M McGuire
- School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102 Australia.,Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226 Australia.,Mater Pharmacy, Mater Health, Raymond Tce, South Brisbane, QLD 4101 Australia
| |
Collapse
|
4
|
Selitsky SR, Mose LE, Smith CC, Chai S, Hoadley KA, Dittmer DP, Moschos SJ, Parker JS, Vincent BG. Prognostic value of B cells in cutaneous melanoma. Genome Med 2019; 11:36. [PMID: 31138334 PMCID: PMC6540526 DOI: 10.1186/s13073-019-0647-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
Background Measures of the adaptive immune response have prognostic and predictive associations in melanoma and other cancer types. Specifically, intratumoral T cell density and function have considerable prognostic and predictive value in skin cutaneous melanoma (SKCM). Less is known about the significance of tumor-infiltrating B cells in SKCM. Our goal was to understand the prognostic and predictive value of B cell phenotypic subsets in SKCM using RNA sequencing. Methods We used our previously published algorithm, V’DJer, to assemble B cell receptor (BCR) repertoires and estimate diversity from short-read RNA sequencing (RNA-seq). We applied machine learning-based cellular phenotype classifiers to measure relative similarity of bulk tumor sample gene expression profiles and different B cell phenotypes. We assessed these aspects of B cell biology in 473 SKCM from the Cancer Genome Atlas Project (TCGA) as well as in RNA-seq data corresponding to tumor samples procured from patients who received CTLA-4 and PD-1 inhibitors for metastatic SKCM. Results We found that the BCR repertoire was associated with different clinical factors, such as tumor tissue site and sex. However, increased clonality of the BCR repertoire was favorably prognostic in SKCM and was prognostic even after first conditioning on various clinical factors. Mutation burden was not correlated with any BCR measurement, and no specific mutation had an altered BCR repertoire. Lack of an assembled BCR in pre-treatment tumor tissues was associated with a lack of anti-tumor response to a CTLA-4 inhibitor in metastatic SKCM. Conclusions These findings suggest an important prognostic and predictive role for B cell characteristics in SKCM. This has implications for melanoma immunobiology and potential development of immunogenomics features to predict survival and response to immunotherapy. Electronic supplementary material The online version of this article (10.1186/s13073-019-0647-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara R Selitsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christof C Smith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stergios J Moschos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Hypermethylation of MDFI promoter with NSCLC is specific for females, non-smokers and people younger than 65. Oncol Lett 2018; 15:9017-9024. [PMID: 29805634 PMCID: PMC5958687 DOI: 10.3892/ol.2018.8535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 01/25/2018] [Indexed: 01/03/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a major subtype of lung cancer. Aberrant DNA methylation has been frequently observed in NSCLC. The aim of the present study was to investigate the role of MyoD family inhibitor (MDFI) methylation in NSCLC. Formalin-fixed paraffin-embedded tumor tissues and adjacent non-cancerous tissues were collected from a total of 111 patients with NSCLC. A methylation assay was performed using the quantitative methylation-specific polymerase chain reaction method. The percentage of methylated reference was used to represent the methylation level of the MDFI promoter. Data mining of a dataset from The Cancer Genome Atlas (TCGA) demonstrated that MDFI promoter methylation levels were significantly increased in 830 tumor tissues compared with 75 non-tumor tissues (P=0.012). However, the results on tissues obtained in the present study indicated that the MDFI promoter methylation levels in tumor tissues were not significantly different compared with those in the adjacent non-tumor tissues (P=0.159). Subsequent breakdown analysis identified that higher MDFI promoter methylation levels were significantly associated with NSCLC in females (P=0.031), but not in males (P=0.832). Age-based subgroup analysis demonstrated that higher MDFI promoter methylation levels were significantly associated with NSCLC in younger patients (≤65 years; P=0.003), but not in older patients (P=0.327). In addition, the association of MDFI methylation with NSCLC was significant in non-smokers (P=0.014), but not in smokers (P=0.832). Similar results also have been determined from subgroup analysis of the TCGA datasets. The Gene Expression Omnibus database indicated MDFI expression restoration in partial lung cancer cell lines (H1299 and Hotz) following demethylation treatment. However, it was identified that MDFI promoter hypermethylation was not significantly associated with prognosis of NSCLC (P>0.05). In conclusion, the present study indicated that the association of higher methylation of the MDFI promoter with NSCLC may be specific to females, non-smokers and people aged ≤65.
Collapse
|
6
|
Gies V, Guffroy A, Korganow AS. [Thymic B cells: not simple bystanders of T cell lymphopoiesis]. Med Sci (Paris) 2017; 33:771-778. [PMID: 28945568 DOI: 10.1051/medsci/20173308023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thymus is the central site for the differentiation and selection of T cells. It has been known for decades that B lymphocytes reside in the thymus, but little attention has been paid to this unique population. Thymic B cells are mainly located in the medulla and at the cortico-medullary junction. They develop intrathymically, do not recirculate and harbor a distinct phenotype in comparison to peripheral B cells. Furthermore, because of their activated phenotype and their precise histological localization, they have been suspected to play a role in the selection of self-reactive T cells. But it is only during this last decade that murine and human studies have highlighted their functions, such as antigen-presenting cells shaping the T cell repertoire. These works have demonstrated the major role of thymic B cells in the immune system.
Collapse
Affiliation(s)
- Vincent Gies
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| | - Aurélien Guffroy
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| | - Anne-Sophie Korganow
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
7
|
Geenen V. [History of the thymus: from an "accident of evolution" to the programming of immunological self-tolerance]. Med Sci (Paris) 2017; 33:653-663. [PMID: 28990569 DOI: 10.1051/medsci/20173306024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This synthesis presents the most important disruptions of conceptions about the thymus since its discovery in Antique Greece. For centuries, the thymus was considered as a vestigial organ, and its role in T-lymphocyte differentiation has been proposed only in the 1960's. Most recent studies attribute to the thymus an essential and unique role in the programming of central immunological self-tolerance. The basal mechanism implicated in this function is the transcription in thymic epithelium of genes encoding precursors of self-antigens. Processing of these latter leads to presentation of self-antigens by the major histocompatibility complex (MHC) machinery expressed by thymic epithelial cells and dendritic cells. During fetal life, this presentation drives negative selection of T-cell clones harboring receptors with high affinity for these MHC/self-antigen complexes. After birth, this presentation also promotes the generation of regulatory T cells specific for these complexes. A number of studies, as well as the identification of Aire and Fezf2 genes, have shown that a thymus dysfunction plays a crucial role in the development of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vincent Geenen
- Université de Liège, Institut de recherche GIGA (Grappe interdisciplinaire de génoprotéomique appliquée), GIGA-I3 (Inflammation, Infection et Immunité), Centre d'Immunoendocrinologie, CHU-B34, B-4000 Liège-Sart Tilman, Belgique - Vincent Geenen est directeur de recherches au Fonds de la recherche scientifique - Fonds national de la recherche scientifique (FRS-FNRS) de Belgique, professeur d'histoire de la recherche biomédicale à la Faculté de médecine de Liège, professeur d'embryologie à la Faculté des sciences de Liège, et chef de clinique en endocrinologie au CHU de Liège
| |
Collapse
|
8
|
|