1
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Berney T, Wassmer CH, Lebreton F, Bellofatto K, Fonseca LM, Bignard J, Hanna R, Peloso A, Berishvili E. From islet of Langerhans transplantation to the bioartificial pancreas. Presse Med 2022; 51:104139. [PMID: 36202182 DOI: 10.1016/j.lpm.2022.104139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes is a disease resulting from autoimmune destruction of the insulin-producing beta cells in the pancreas. When type 1 diabetes develops into severe secondary complications, in particular end-stage nephropathy, or life-threatening severe hypoglycemia, the best therapeutic approach is pancreas transplantation, or more recently transplantation of the pancreatic islets of Langerhans. Islet transplantation is a cell therapy procedure, that is minimally invasive and has a low morbidity, but does not display the same rate of functional success as the more invasive pancreas transplantation because of suboptimal engraftment and survival. Another issue is that pancreas or islet transplantation (collectively known as beta cell replacement therapy) is limited by the shortage of organ donors and by the need for lifelong immunosuppression to prevent immune rejection and recurrence of autoimmunity. A bioartificial pancreas is a construct made of functional, insulin-producing tissue, embedded in an anti-inflammatory, immunomodulatory microenvironment and encapsulated in a perm-selective membrane allowing glucose sensing and insulin release, but isolating from attacks by cells of the immune system. A successful bioartificial pancreas would address the issues of engraftment, survival and rejection. Inclusion of unlimited sources of insulin-producing cells, such as xenogeneic porcine islets or stem cell-derived beta cells would further solve the problem of organ shortage. This article reviews the current status of clinical islet transplantation, the strategies aiming at developing a bioartificial pancreas, the clinical trials conducted in the field and the perspectives for further progress.
Collapse
Affiliation(s)
- Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Department of Surgery, School of Medicine and Natural Sciences, Ilia State University, Tbilisi, Georgia
| | - Charles H Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Laura Mar Fonseca
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Juliette Bignard
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Reine Hanna
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland
| | - Andrea Peloso
- Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, University of Geneva School of Medicine, Geneva, Switzerland; Faculty Diabetes Center, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
| |
Collapse
|
3
|
Papoz A, Clément F, Laporte C, Tubbs E, Gidrol X, Pitaval A. [Generating pancreatic islets organoids: Langerhanoids]. Med Sci (Paris) 2022; 38:52-58. [PMID: 35060887 DOI: 10.1051/medsci/2021244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The extension of islet transplantation to a wider number of Type 1 diabetic patients is compromised by the scarcity of donors, the reduced ex vivo survival of pancreatic islets and the use of immunosuppressive treatments. Islets of Langerhans isolated from brain-dead donors are currently the only cell source for transplantation. Thus, it is crucial to find an alternative and an abundant source of functional insulin secreting cells not only for clinical use but also for the development of research dedicated to the screening of drugs and to the development of new therapeutic targets. Several groups around the world, including ours, develop 3D culture models as Langerhanoids that closely mimick human pancreatic islets physiology. In this review, we describe recent advances to mimic the pancreatic niche (extracellular matrix, vascularization, microfluidics) allowing better functionality of Langerhanoids.
Collapse
Affiliation(s)
- Anastasia Papoz
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Flora Clément
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Camille Laporte
- Univ. Grenoble Alpes, CEA, Leti, Division for biology and healthcare technologies, Microfluidic systems and bioengineering Lab, F-38000, Grenoble, France
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France - Univ. Grenoble Alpes, LBFA et BEeSy, Inserm U1055, F-38000, Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| | - Amandine Pitaval
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, Biomics, F-38000, Grenoble, France
| |
Collapse
|
4
|
Yao J, Yang M, Atteh L, Liu P, Mao Y, Meng W, Li X. A pancreas tumor derived organoid study: from drug screen to precision medicine. Cancer Cell Int 2021; 21:398. [PMID: 34315500 PMCID: PMC8314636 DOI: 10.1186/s12935-021-02044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) one of the deadliest malignant tumor. Despite considerable progress in pancreatic cancer treatment in the past 10 years, PDAC mortality has shown no appreciable change, and systemic therapies for PDAC generally lack efficacy. Thus, developing biomarkers for treatment guidance is urgently required. This review focuses on pancreatic tumor organoids (PTOs), which can mimic the characteristics of the original tumor in vitro. As a powerful tool with several applications, PTOs represent a new strategy for targeted therapy in pancreatic cancer and contribute to the advancement of the field of personalized medicine.
Collapse
Affiliation(s)
- Jia Yao
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Man Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Lawrence Atteh
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|