1
|
Lee SY, Cho S, Woo SY, Hwang M, Chun HS. Risk Assessment Considering the Bioavailability of 3-β-d-Glucosides of Deoxynivalenol and Nivalenol through Food Intake in Korea. Toxins (Basel) 2023; 15:460. [PMID: 37505729 PMCID: PMC10467052 DOI: 10.3390/toxins15070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Deoxynivalenol and nivalenol are major type B trichothecenes and the most frequently occurring mycotoxins worldwide. Their 3-β-d-glucoside forms have recently become a safety management issue. These glucoside conjugates are converted back to the parent toxins during human digestion, but studies to confirm their bioavailability are lacking. In this study, a risk assessment was performed considering the bioavailability of glucoside conjugates. A literature review was conducted to compile the existing bioavailability studies of glucoside conjugates, and three exposure scenarios considering bioavailability were established. As a result of a risk assessment using deterministic and probabilistic methods, both the deoxynivalenol and nivalenol groups had safe levels of tolerable daily intake percentage (TDI%), not exceeding 100%. The TDI% for the nivalenol group was approximately 2-3 times higher than that for the deoxynivalenol group. Notably, infants showed higher TDI% than adults for both toxin groups. By food processing type, the overall TDI% was highest for raw material, followed by simple-processed and then fermented-processed. Since glucoside conjugates can be converted into parent toxins during the digestion process, a risk assessment considering bioavailability allows the more accurate evaluation of the risk level of glucoside conjugates and can direct their safety management in the future.
Collapse
Affiliation(s)
- Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Solyi Cho
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| | - Myungsil Hwang
- Department of Food & Nutrition, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea; (S.Y.L.); (S.C.); (S.Y.W.)
| |
Collapse
|
2
|
Navale VD, Vamkudoth K. Toxicity and preventive approaches of Fusarium derived mycotoxins using lactic acid bacteria: state of the art. Biotechnol Lett 2022; 44:1111-1126. [PMID: 36006577 DOI: 10.1007/s10529-022-03293-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Mycotoxin contamination of food and feed is a serious food safety issue and causes acute and chronic diseases in humans and livestock. Climatic and agronomic changes helps in the proliferation of fungal growth and mycotoxin production in food commodities. Mycotoxin contamination has attracted global attention due to its wide range of toxicity to humans and animals. However, physical and chemical management approaches in practice are unsafe for well-being due to their health-hazardous nature. Various antibiotics and preservatives are in use to reduce the microbial load and improve the shelf life of food products. In addition, the use of antibiotic growth promotors in livestock production may increase the risk of antimicrobial resistance, which is a global health concern. Due to their many uses, probiotics are helpful microbes that have a significant impact on food and nutrition. Furthermore, the probiotic potential of lactic acid bacteria (LAB) is employed in various food and feed preparations to neutralize mycotoxins, antimicrobial activities, balance the gut microbiome, and various immunomodulatory activities in both humans and livestock. In addition, LAB produces various antimicrobials, flavouring agents, peptides, and proteins linked to various food and health care applications. The LAB-based processes for mycotoxin management are more effective, eco-friendly, and low-cost than physical and chemical approaches. The toxicity, novel preventive measures, binding nature, and molecular mechanisms of mycotoxins' detoxification using LAB have been highlighted in this review.
Collapse
Affiliation(s)
- Vishwambar D Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, India
| | - KoteswaraRao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, India.
| |
Collapse
|
3
|
Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0007-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Fusarium mycotoxin contamination of both foods and feeds is an inevitable phenomenon worldwide. Deoxynivalenol, nivalenol, zearalenone, T-2 toxin and fumonisin B1 are the most studied Fusarium mycotoxins. Co-contamination of mycotoxins has also been studied frequently. Fusarium mycotoxins occur frequently in foods at very low concentrations, so there is a need to provide sensitive and reliable methods for their early detection. The present review provides insight on the types, toxicology and occurrence of Fusarium mycotoxins. It further elucidates various detection methods of mycotoxin production from Fusarium strains, with a special focus on chromatographic and immunochemical techniques.
Collapse
|
4
|
Aupanun S, Phuektes P, Poapolathep S, Alassane-Kpembi I, Oswald IP, Poapolathep A. Individual and combined cytotoxicity of major trichothecenes type B, deoxynivalenol, nivalenol, and fusarenon-X on Jurkat human T cells. Toxicon 2019; 160:29-37. [DOI: 10.1016/j.toxicon.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
|
5
|
Pietsch C, Burkhardt-Holm P. Feed-borne exposure to deoxynivalenol leads to acute and chronic effects on liver enzymes and histology in carp. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2015.1879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Deoxynivalenol (DON) is a frequent contaminant of feeds in aquaculture, but the consequences of this contamination have rarely been evaluated. Previous studies on carp indicated effects of DON on liver function and histology after four weeks of feeding. The present study aimed to unravel the time course of liver responses of carp to orally applied DON. Therefore, liver enzyme activities and histology have been investigated after 7, 14, 26 and 56 days of DON feeding. The acute response comprises down-regulation of biotransformation enzymes, whereas the chronic response to DON is characterised by activation of alanine aminotransferase which indicates damage to liver tissue. Examination of histological sections of liver tissue revealed that changes such as fat aggregation, vacuolisation and hyperaemia were present after 14 and 26 days of exposure to DON but not thereafter. Several enzymes involved in glutathione cycling and reduction of oxidative stress were found to be reduced after 26 and 56 days of DON feeding. The results suggest that supporting the antioxidative system, e.g. by using glutathione-enriched yeast extracts as a food additive, might be successful in preventing the effects of DON in carp. This is the basis of a fundamental hypothesis since DON contamination of fish feed leads to pronounced effects on liver histology and liver enzyme activities which may also cause changes in the normal liver metabolism of endogenous and xenobiotic compounds.
Collapse
Affiliation(s)
- C. Pietsch
- Zurich University of Applied Sciences, Institute of Natural Resource Sciences, Gruental, P.O. Box, 8820 Waedenswil, Switzerland
- University Basel, Man – Society – Environment, Department of Environmental Sciences, Vesalgasse 1, 4051 Basel, Switzerland
| | - P. Burkhardt-Holm
- Zurich University of Applied Sciences, Institute of Natural Resource Sciences, Gruental, P.O. Box, 8820 Waedenswil, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
6
|
Escrivá L, Font G, Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. Food Chem Toxicol 2015; 78:185-206. [DOI: 10.1016/j.fct.2015.02.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/26/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
|
7
|
Affiliation(s)
- Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824; ,
| | - John D. Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205;
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824; ,
| |
Collapse
|
8
|
Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3262] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|