1
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
2
|
Ueno H, Miyamoto T, Morimoto H, Sanada K, Furuno I, Nakazono K, Hasegawa E, Kuma A, Oginosawa Y, Tsuda Y, Araki M, Tamura M, Ueta Y, Otsuji Y, Kataoka M. Effects of bicarbonate/lactate-buffered neutral peritoneal dialysis fluids on angiogenesis-related proteins in patients undergoing peritoneal dialysis. RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In order to facilitate the safe and long-term delivery of peritoneal dialysis (PD), it is necessary to improve the biocompatibility of peritoneal dialysis fluids (PDFs). The novel bicarbonate/lactate-buffered neutral PDFs (B/L-PDFs) are expected to be improved biocompatible. This study evaluated the biocompatibility of B/L-PDFs by analysis on the profile of angiogenesis-related proteins in drained dialysate of patients undergoing PD.
Methods
Concentrations of 20 angiogenesis-related proteins in the dialysate were semi-quantitatively determined using a RayBio® Human Angiogenesis Antibody Array and were compared between B/L-PDFs and conventional lactate-buffered neutral PDFs (L-PDFs).
Results
The expression of growth-related oncogene (GRO α/β/γ), which belongs to the CXC chemokine family, decreased significantly after use of the B/L-PDFs compared to the L-PDFs (P = 0.03). The number of the proteins with lower level in the B/L-PDFs compared with L-PDFs was significantly negatively correlated with the PD duration (Spearman ρ = − 0.81, P = 0.004).
Conclusion
This study suggested that B/L-PDFs are more biocompatible than conventional PDFs.
Collapse
|
3
|
Higuchi C, Kuriyama J, Sakura H. Effect of lactate as a peritoneal dialysis fluid buffer on rat peritoneal mesothelial cells. RENAL REPLACEMENT THERAPY 2020. [DOI: 10.1186/s41100-020-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Neutral, low-glucose degradation product (GDP) peritoneal dialysis fluid (PDF) is less damaging to the peritoneum than conventional PDF but is still insufficient for biocompatibility. One remaining issue is the problem of buffering.
Methods
Using cultured rat peritoneal mesothelial cells (PMCs), the present study examined the difference between the effects of neutral low-GDP lactate PDF and neutral low-GDP bicarbonate/lactate PDF on cells. The effects of lactate stimulation on these cells were also examined.
Results
Lactate PDF enhanced mRNA expressions of α-smooth muscle actin (αSMA) and type 1 and type 3 collagens and lowered expression of e-cadherin mRNA in PMCs compared to bicarbonate/lactate PDF. Lactate stimulation increased mRNA expressions of αSMA, matrix metalloproteinase 2 (MMP2), and basic fibroblast growth factor (bFGF) and suppressed e-cadherin mRNA expression. Transforming growth factor (TGF)-β1 and TGF-β2 and collagen type 1 and 3 mRNA expressions were also enhanced by lactate stimulation.
Conclusions
These results suggest that lactate as a PDF buffer may act on PMCs to promote epithelial-mesenchymal transition (EMT) and production of TGF-β, bFGF, and collagen.
Collapse
|
4
|
van Gelder MK, Ligabue G, Giovanella S, Bianchini E, Simonis F, Hazenbrink DHM, Joles JA, Bajo Rubio MA, Selgas R, Cappelli G, Gerritsen KGF. In vitro efficacy and safety of a system for sorbent-assisted peritoneal dialysis. Am J Physiol Renal Physiol 2020; 319:F162-F170. [PMID: 32475132 DOI: 10.1152/ajprenal.00079.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A system for sorbent-assisted peritoneal dialysis (SAPD) was designed to continuously recirculate dialysate via a tidal mode using a single lumen peritoneal catheter with regeneration of spent dialysate by means of sorbent technology. We hypothesize that SAPD treatment will maintain a high plasma-to-dialysate concentration gradient and increase the mass transfer area coefficient of solutes. Thereby, the SAPD system may enhance clearance while reducing the number of exchanges. Application is envisaged at night as a bedside device (12 kg, nighttime system). A wearable system (2.0 kg, daytime system) may further enhance clearance during the day. Urea, creatinine, and phosphate removal were studied with the daytime and nighttime system (n = 3 per system) by recirculating 2 liters of spent peritoneal dialysate via a tidal mode (mean flow rate: 50 and 100 mL/min, respectively) for 8 h in vitro. Time-averaged plasma clearance over 24 h was modeled assuming one 2 liter exchange/day, an increase in mass transfer area coefficient, and 0.9 liters ultrafiltration/day. Urea, creatinine, and phosphate removal was 33.2 ± 4.1, 5.3 ± 0.5, and 6.2 ± 1.8 mmol, respectively, with the daytime system and 204 ± 28, 10.3 ± 2.4, and 11.4 ± 2.1 mmol, respectively, with the nighttime system. Time-averaged plasma clearances of urea, creatinine and phosphate were 9.6 ± 1.1, 9.6 ± 1.7, and 7.0 ± 0.9 mL/min, respectively, with the nighttime system and 10.8 ± 1.1, 13.4 ± 1.8, and 9.7 ± 1.6 mL/min, respectively, with the daytime and nighttime system. SAPD treatment may improve removal of uremic toxins compared with conventional peritoneal dialysis, provided that peritoneal mass transport will increase.
Collapse
Affiliation(s)
- Maaike K van Gelder
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Giulia Ligabue
- Division of Nephrology, Surgical, Medical, Dental, Morphology Sciences, Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Giovanella
- Division of Nephrology, Surgical, Medical, Dental, Morphology Sciences, Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bianchini
- Division of Nephrology, Surgical, Medical, Dental, Morphology Sciences, Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Diënty H M Hazenbrink
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria A Bajo Rubio
- Nephrology Service, Hospital Universitario La Paz, Institute for Health Research, Instituto Reina Sofía de Investigación en Nefrología, the Spanish Renal Research Network, Madrid, Spain
| | - Rafael Selgas
- Nephrology Service, Hospital Universitario La Paz, Institute for Health Research, Instituto Reina Sofía de Investigación en Nefrología, the Spanish Renal Research Network, Madrid, Spain
| | - Gianni Cappelli
- Division of Nephrology, Surgical, Medical, Dental, Morphology Sciences, Transplant, Oncology and Regenerative Medicine Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Affiliation(s)
- Alberto Ortiz
- Unidad de Diálisis, Fundación Jiménez Díaz, Universidad Autónoma de Madrid y Grupo de Estudios Peritoneales de Madrid del Instituto Reina Sofia de Investigaciones Nefrológicas, Madrid, Spain
| | - Marina P. Catalán
- Unidad de Diálisis, Fundación Jiménez Díaz, Universidad Autónoma de Madrid y Grupo de Estudios Peritoneales de Madrid del Instituto Reina Sofia de Investigaciones Nefrológicas, Madrid, Spain
| |
Collapse
|
6
|
Fusshoeller A, Baehr J, Grabensee B, Plum J. Biocompatibility of a Bicarbonate/Lactate-Buffered PD Fluid Tested with a Double-Chamber Cell Culture System. Perit Dial Int 2020. [DOI: 10.1177/089686080502500415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective In peritoneal dialysis (PD), neutrally buffered PD fluids with lower concentrations of glucose degradation products (GDP) have tested superior to conventional fluids in terms of biocompatibility. However, conventional in vitro studies provoke debate because, due to the lack of subsequent equilibration with the blood, they do not resemble the true intraperitoneal situation of PD. Methods We established a double-chamber cell culture system with peritoneal mesothelial cells seeded on top of a permeable membrane, with a physiological buffer below. Thus adequately reflecting the in vivo equilibration pattern, we compared a conventional fluid with a neutral bicarbonate/lactate-buffered PD solution. Using an exchange pattern adapted from an 8-hour continuous ambulatory PD regimen, cell viability was assessed with an MTT assay, and cell function via constitutive and stimulated interleukin (IL)-6 release. As an indicator of potential induction of fibrosis and as a parameter of mesothelial cell integrity, respectively, transforming growth factor-beta 1 (TGF-β1) generation and cancer antigen 125 (CA125) release were measured. Results The conventional solution significantly compromised mesothelial cell viability and function in terms of mitochondrial activity ( p < 0.05) and stimulated IL-6 release ( p < 0.05). The bicarbonate/lactate fluid had no effect on cell viability or IL-6 release and turned out to be equivalent to the properties of the growth medium. Whereas lactate-incubated cells did not respond to IL-1β stimulation, bicarbonate/lactate-treated cells adequately increased IL-6 release after stimulation ( p < 0.0005). Release of TGF-β1 and CA125 did not differ between the different fluids and the control. Conclusions Due to the sustained equilibration process, the double-chamber cell culture model allows a more realistic insight into mesothelial cell viability and function in terms of PD. As in classic in vitro studies, an adverse effect of conventional PD solutions on mesothelial cells was overt in the present cell culture system. The neutral bicarbonate/lactate-buffered fluid with low GDP content, however, did not interfere with mesothelial cell vitality or function, indicating superior biocompatibility.
Collapse
Affiliation(s)
- Andreas Fusshoeller
- Department of Nephrology and Rheumatology, Heinrich-Heine University of Düsseldorf, Germany
| | - Jessica Baehr
- Department of Nephrology and Rheumatology, Heinrich-Heine University of Düsseldorf, Germany
| | - Bernd Grabensee
- Department of Nephrology and Rheumatology, Heinrich-Heine University of Düsseldorf, Germany
| | - Joerg Plum
- Department of Nephrology and Rheumatology, Heinrich-Heine University of Düsseldorf, Germany
| |
Collapse
|
7
|
Misra PS, Nessim SJ, Perl J. "Biocompatible" Neutral pH Low-GDP Peritoneal Dialysis Solutions: Much Ado About Nothing? Semin Dial 2018; 30:164-173. [PMID: 28251697 DOI: 10.1111/sdi.12579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adverse outcomes in peritoneal dialysis (PD), including PD related infections, the loss of residual kidney function (RKF), and longitudinal, deleterious changes in peritoneal membrane function continue to limit the long-term success of PD therapy. The observation that these deleterious changes occur upon exposure to conventional glucose-based PD solutions fuels the search for a more biocompatible PD solution. The development of a novel PD solution with a neutral pH, and lower in glucose degradation products (GDPs) compared to its conventional predecessors has been labeled a "biocompatible" solution. While considerable evidence in support of these novel solutions' biocompatibility has emerged from cell culture and animal studies, the clinical benefits as compared to conventional PD solutions are less clear. Neutral pH low GDP (NpHLGDP) PD solutions appear to be effective in reducing infusion pain, but their effects on other clinical endpoints including peritoneal membrane function, preservation of RKF, PD-related infections, and technique and patient survival are less clear. The literature is limited by studies characterized by relatively few patients, short follow-up time, heterogeneity with regards to the novel PD solution type under study, and the different patient populations under study. Nonetheless, the search for a more biocompatible PD solution continues with emerging data on promising non glucose-based solutions.
Collapse
Affiliation(s)
- Paraish S Misra
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sharon J Nessim
- Division of Nephrology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Perl
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Eich G, Bartosova M, Tischer C, Wlodkowski TT, Schaefer B, Pichl S, Kraewer N, Ranchin B, Vondrak K, Liebau MC, Hackert T, Schmitt CP. Bicarbonate buffered peritoneal dialysis fluid upregulates angiopoietin-1 and promotes vessel maturation. PLoS One 2017; 12:e0189903. [PMID: 29253861 PMCID: PMC5734783 DOI: 10.1371/journal.pone.0189903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022] Open
Abstract
Background Ultrafiltration decline is a progressive issue for patients on chronic peritoneal dialysis (PD) and can be caused by peritoneal angiogenesis induced by PD fluids. A recent pediatric trial suggests better preservation of ultrafiltration with bicarbonate versus lactate buffered fluid; underlying molecular mechanisms are unknown. Methods Angiogenic cytokine profile, tube formation capacity and Receptor Tyrosine Kinase translocation were assessed in primary human umbilical vein endothelial cells following incubation with bicarbonate (BPDF) and lactate buffered (LPDF), pH neutral PD fluid with low glucose degradation product content and lactate buffered, acidic PD fluid with high glucose degradation product content (CPDF). Peritoneal biopsies from age-, PD-vintage- and dialytic glucose exposure matched, peritonitis-free children on chronic PD underwent automated histomorphometry and immunohistochemistry. Results In endothelial cells angiopoietin-1 mRNA and protein abundance increased 200% upon incubation with BPDF, but decreased by 70% with LPDF as compared to medium control; angiopoietin-2 remained unchanged. Angiopoietin-1/Angiopoietin-2 protein ratio was 15 and 3-fold increased with BPDF compared to LPDF and medium. Time-lapse microscopy with automated network analysis demonstrated less endothelial cell tube formation with BPDF compared to LPDF and CPDF incubation. Receptor Tyrosine Kinase translocated to the cell membrane in BPDF but not in LPDF or CPDF incubated endothelial cells. In children dialyzed with BPDF peritoneal vessels were larger and angiopoietin-1 abundance in CD31 positive endothelium higher compared to children treated with LPDF. Conclusion Bicarbonate buffered PD fluid promotes vessel maturation via upregulation of angiopoietin-1 in vitro and in children on dialysis. Our findings suggest a molecular mechanism for the observed superior preservation of ultrafiltration capacity with bicarbonate buffered PD fluid with low glucose degradation product content.
Collapse
Affiliation(s)
- Gwendolyn Eich
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Tanja Tamara Wlodkowski
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Pichl
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Kraewer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Ranchin
- Service de Néphrologie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, France
| | - Karel Vondrak
- Department of Pediatrics, University Hospital Motol, Prague, Czech Republic
| | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Thilo Hackert
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Al-Hwiesh AK, Shawarby MA, Abdul-Rahman IS, Al-Oudah N, Al-Dhofairy B, Divino-Filho JC, Abdelrahman A, Zakaria H, Nasr El-Din MA, Eldamati A, El-Salamony T, Al-Muhanna FA. Changes in peritoneal membrane with different peritoneal dialysis solutions: Is there a difference? Int J Organ Transplant Med 2016. [DOI: 10.1016/j.hkjn.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Büchel J, Bartosova M, Eich G, Wittenberger T, Klein-Hitpass L, Steppan S, Hackert T, Schaefer F, Passlick-Deetjen J, Schmitt CP. Interference of peritoneal dialysis fluids with cell cycle mechanisms. Perit Dial Int 2014; 35:259-74. [PMID: 25082841 DOI: 10.3747/pdi.2013.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. METHODS PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. RESULTS The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10(-35)), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF (86%). CONCLUSION In conclusion, PD solutions substantially differ with regard to their gene regulating profile and impact on vital functions of PMC, i.e. on cells known to be essential for peritoneal membrane homeostasis.
Collapse
Affiliation(s)
- Janine Büchel
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Maria Bartosova
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Eich
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Ludger Klein-Hitpass
- University of Duisburg-Essen, Faculty of Medicine, Institute of Cell Biology, Essen, Germany
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Thilo Hackert
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Franz Schaefer
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Claus P Schmitt
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Schmitt CP, Nau B, Gemulla G, Bonzel KE, Hölttä T, Testa S, Fischbach M, John U, Kemper MJ, Sander A, Arbeiter K, Schaefer F. Effect of the dialysis fluid buffer on peritoneal membrane function in children. Clin J Am Soc Nephrol 2012; 8:108-15. [PMID: 23124784 DOI: 10.2215/cjn.00690112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Double-chamber peritoneal dialysis fluids exert less toxicity by their neutral pH and reduced glucose degradation product content. The role of the buffer compound (lactate and bicarbonate) has not been defined in humans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A multicenter randomized controlled trial in 37 children on automated peritoneal dialysis was performed. After a 2-month run-in period with conventional peritoneal dialysis fluids, patients were randomized to neutral-pH, low-glucose degradation product peritoneal dialysis fluids with 35 mM lactate or 34 mM bicarbonate content. Clinical and biochemical monitoring was performed monthly, and peritoneal equilibration tests and 24-hour clearance studies were performed at 0, 3, 6, and 10 months. RESULTS No statistically significant difference in capillary blood pH, serum bicarbonate, or oral buffer supplementation emerged during the study. At baseline, peritoneal solute equilibration and clearance rates were similar. During the study, 4-hour dialysis to plasma ratio of creatinine tended to increase, and 24-hour dialytic creatinine and phosphate clearance increased with lactate peritoneal dialysis fluid but not with bicarbonate peritoneal dialysis fluid. Daily net ultrafiltration, which was similar at baseline (lactate fluid=5.4±2.6 ml/g glucose exposure, bicarbonate fluid=4.9±1.9 ml/g glucose exposure), decreased to 4.6±1.0 ml/g glucose exposure in the lactate peritoneal dialysis fluid group, whereas it increased to 5.1±1.7 ml/g glucose exposure in the bicarbonate content peritoneal dialysis fluid group (P=0.006 for interaction). CONCLUSIONS When using biocompatible peritoneal dialysis fluids, equally good acidosis control is achieved with lactate and bicarbonate buffers. Improved long-term preservation of peritoneal membrane function may, however, be achieved with bicarbonate-based peritoneal dialysis fluids.
Collapse
|
12
|
Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol 2012; 27:1165-77. [PMID: 22382466 DOI: 10.1007/s00467-012-2120-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. METHODS Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. RESULTS Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209 ± 80 and 197 ± 60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. CONCLUSIONS Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.
Collapse
|
13
|
Schmitt CP, Bakkaloglu SA, Klaus G, Schröder C, Fischbach M. Solutions for peritoneal dialysis in children: recommendations by the European Pediatric Dialysis Working Group. Pediatr Nephrol 2011; 26:1137-47. [PMID: 21448787 DOI: 10.1007/s00467-011-1863-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this article is to provide recommendations on the choice of peritoneal dialysis (PD) fluids in children by the European Pediatric Dialysis Working Group. The literature on experimental and clinical studies with PD solutions in children and adults was analyzed together with consensus discussions within the group. A grading was performed based on the international KDIGO nomenclature and methods. The lowest glucose concentration possible should be used. Icodextrin may be applied once daily during the long dwell, in particular in children with insufficient ultrafiltration. Infants on PD are at risk of ultrafiltration-associated sodium depletion, while anuric adolescents may have water and salt overload. Hence, the sodium chloride balance needs to be closely monitored. In growing children, the calcium balance should be positive and dialysate calcium adapted according to individual needs. Limited clinical experience with amino acid-based PD fluids in children suggests good tolerability. The anabolic effect, however, is small; adequate enteral nutrition is preferred. CPD fluids with reduced glucose degradation products (GDP) content reduce local and systemic toxicity and should be preferred whenever possible. Correction of metabolic acidosis is superior with pH neutral bicarbonate-based fluids compared with single-chamber, acidic, lactate-based solutions. Prospective comparisons of low GDP solutions with different buffer compositions are still few, and firm recommendations cannot yet be given, except when hepatic lactate metabolism is severely compromised.
Collapse
Affiliation(s)
- Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, INF 430, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Schmitt CP, Zaloszyc A, Schaefer B, Fischbach M. Peritoneal dialysis tailored to pediatric needs. Int J Nephrol 2011; 2011:940267. [PMID: 21761001 PMCID: PMC3132841 DOI: 10.4061/2011/940267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/29/2011] [Indexed: 02/02/2023] Open
Abstract
Consideration of specific pediatric aspects is essential to achieve adequate peritoneal dialysis (PD) treatment in children. These are first of all the rapid growth, in particular during infancy and puberty, which must be accompanied by a positive calcium balance, and the age dependent changes in body composition. The high total body water content and the high ultrafiltration rates required in anuric infants for adequate nutrition predispose to overshooting convective sodium losses and severe hypotension. Tissue fragility and rapid increases in intraabdominal fat mass predispose to hernia and dialysate leaks. Peritoneal equilibration tests should repeatedly been performed to optimize individual dwell time. Intraperitoneal pressure measurements give an objective measure of intraperitoneal filling, which allow for an optimized dwell volume, that is, increased dialysis efficiency without increasing the risk of hernias, leaks, and retrofiltration. We present the concept of adapted PD, that is, the combination of short dwells with low fill volume to promote ultrafiltration and long dwells with a high fill volume to improve purification within one PD session. The use of PD solutions with low glucose degradation product content is recommended in children, but unfortunately still not feasible in many countries.
Collapse
Affiliation(s)
- C P Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, INF 430, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
15
|
Perl J, Nessim SJ, Bargman JM. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int 2011; 79:814-24. [DOI: 10.1038/ki.2010.515] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Chaudhary K, Khanna R. Biocompatible Peritoneal Dialysis Solutions: Do We Have One?: Table 1. Clin J Am Soc Nephrol 2010; 5:723-32. [DOI: 10.2215/cjn.05720809] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Weiss L, Stegmayr B, Malmsten G, Tejde M, Hadimeri H, Siegert CE, Ahlmén J, Larsson R, Ingman B, Simonsen O, van Hamersvelt HW, Johansson AC, Hylander B, Mayr M, Nilsson PH, Andersson PO, De los Ríos T. Biocompatibility and Tolerability of a Purely Bicarbonate-Buffered Peritoneal Dialysis Solution. Perit Dial Int 2009. [DOI: 10.1177/089686080902900610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Novel peritoneal dialysis solutions are characterized by a minimal content of glucose degradation products and a neutral pH. Many studies have shown the biocompatibility of neutral lactate-buffered solutions; however, until now, the effect of purely bicarbonate-buffered solutions has not been intensively studied in vivo. Methods This study was an open label, prospective, crossover multicenter trial to investigate the biocompatibility of a purely bicarbonate-buffered solution (bicPDF) by measuring biocompatibility parameters such as cancer antigen 125 (CA125) in peritoneal effluent. 55 patients were enrolled in the study. After a 2-week run-in phase, 53 patients could be randomized into 2 groups, starting with either standard lactate-buffered peritoneal dialysis fluid (SPDF) for 12 weeks (phase 1) and then switching to bicPDF for 12 weeks (phase 2), or vice versa. Overnight peritoneal effluents were collected at baseline and at the end of phases 1 and 2 and were tested for CA125, hyaluronic acid, vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interferon gamma (IFNγ), and transforming growth factor-beta1 (TGF-β1). Total ultrafiltration and residual renal function were also assessed. At the end of the study, pain during fluid exchange and dwell was evaluated using special questionnaires. Results 34 patients completed the study; 27 of them provided data for analysis of the biocompatibility parameters. CA125 levels in overnight effluent were significantly higher with bicPDF (61.9 ± 33.2 U/L) than with SPDF (18.6 ± 18.2 U/L, p < 0.001). Hyaluronic acid levels were significantly lower after the use of bicPDF (185.0 ± 119.6 ng/mL) than after SPDF (257.4 ± 174.0 ng/mL, p = 0.013). Both TNF-α and TGF-β1 showed higher levels with the use of bicPDF than with SPDF. No differences were observed for IL-6, VEGF, or IFNγ levels. We observed an improvement in the glomerular filtration rate with the use of bicPDF but no differences were observed for total fluid loss. Pain scores could be analyzed in 23 patients: there was no difference between the solutions. Conclusions The use of a purely bicarbonate-buffered low-glucose degradation product solution significantly changes most of the peritoneal effluent markers measured, suggesting an improvement in peritoneal membrane integrity. Additionally, it seems to have a positive effect on residual renal function.
Collapse
Affiliation(s)
- Lars Weiss
- Department/Division of Nephrology, Centralsjukhuset, Karlstad
| | | | | | | | | | - Carl E. Siegert
- Department of Nephrology, St. Lucas Andreas Ziekenhuis, Amsterdam
| | | | | | | | | | | | - Ann C. Johansson
- Department of Nephrology and Transplantation, Universitetssjukhuset MAS, Malmö
| | - Britta Hylander
- Department/Division of Nephrology, Karolinska Sjukhuset, Stockholm
| | - Michael Mayr
- Clinic of Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | | | | | - Tatiana De los Ríos
- Clinical Research Department, Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| |
Collapse
|
18
|
Kratochwill K, Lechner M, Siehs C, Lederhuber HC, Rehulka P, Endemann M, Kasper DC, Herkner KR, Mayer B, Rizzi A, Aufricht C. Stress responses and conditioning effects in mesothelial cells exposed to peritoneal dialysis fluid. J Proteome Res 2009; 8:1731-47. [PMID: 19231869 DOI: 10.1021/pr800916s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Renal replacement therapy by peritoneal dialysis is frequently complicated by technical failure. Peritoneal dialysis fluids (PDF) cause injury to the peritoneal mesothelial cell layer due to their cytotoxicity. As only isolated elements of the involved cellular processes have been studied before, we aimed at a global assessment of the mesothelial stress response to PDF. Following single or repeated exposure to PDF or control medium, proteomics and bioinformatics techniques were combined to study effects in mesothelial cells (MeT-5A). Protein expression was assessed by two-dimensional gel electrophoresis, and significantly altered spots were identified by MALDI-TOF MS and MS2 techniques. The lists of experimentally derived candidate proteins were expanded by a next neighbor approach and analyzed for significantly enriched biological processes. To address the problem of an unknown portion of false positive spots in 2DGE, only proteins showing significant p-values on both levels were further interpreted. Single PDF exposure resulted in reduction of biological processes in favor of reparative responses, including protein metabolism, modification and folding, with chaperones as a major subgroup. The observed biological processes triggered by this acute PDF exposure mainly contained functionally interwoven multitasking proteins contributing as well to cytoskeletal reorganization and defense mechanisms. Repeated PDF exposure resulted in attenuated protein regulation, reflecting inhibition of stress responses by high levels of preinduced chaperones. The identified proteins were less attributable to acute cellular injury but rather to specialized functions with a reduced number of involved multitasking proteins. This finding agrees well with the concept of conditioning effects and cytoprotection. In conclusion, this study describes the reprogrammed proteome of mesothelial cells during recovery from PDF exposure and adaption to repetitive stress. A broad stress response with a number of highly overlapping processes and multitasking proteins shifts toward a more specific response of only few less overlapping processes.
Collapse
Affiliation(s)
- Klaus Kratochwill
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bender TO, Witowski J, Aufricht C, Endemann M, Frei U, Passlick-Deetjen J, Jörres A. Biocompatibility of a bicarbonate-buffered amino-acid-based solution for peritoneal dialysis. Pediatr Nephrol 2008; 23:1537-43. [PMID: 18481110 DOI: 10.1007/s00467-008-0834-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 11/24/2022]
Abstract
Amino-acid-based peritoneal dialysis (PD) fluids have been developed to improve the nutritional status of PD patients. As they may potentially exacerbate acidosis, an amino-acid-containing solution buffered with bicarbonate (Aminobic) has been proposed to effectively maintain acid-base balance. The aim of this study was to evaluate the mesothelial biocompatibility profile of this solution in comparison with a conventional low-glucose-based fluid. Omentum-derived human peritoneal mesothelial cells (HPMC) were preexposed to test PD solutions for up to 120 min, then allowed to recover in control medium for 24 h, and assessed for heat-shock response, viability, and basal and stimulated cytokine [interleukin (IL)-6] and prostaglandin (PGE(2)) release. Acute exposure of HPMC to conventional low-glucose-based PD solution resulted in a time-dependent increase in heat-shock protein (HSP-72) expression, impaired viability, and reduced ability to release IL-6 in response to stimulation. In contrast, in cells treated with Aminobic, the expression of HSP-72 was significantly lower, and viability and cytokine-producing capacity were preserved and did not differ from those seen in control cells. In addition, exposure to Aminobic increased basal release of IL-6 and PGE(2). These data point to a favorable biocompatibility profile of the amino-acid-based bicarbonate-buffered PD solution toward HPMC.
Collapse
Affiliation(s)
- Thorsten O Bender
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Higuchi C, Nishimura H, Sanaka T. Biocompatibility of peritoneal dialysis fluid and influence of compositions on peritoneal fibrosis. Ther Apher Dial 2007; 10:372-9. [PMID: 16911191 DOI: 10.1111/j.1744-9987.2006.00391.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional peritoneal dialysis fluid (PDF) is a bioincompatible solution because of several components. These unphysiological compositions might contribute to the development of peritoneal fibrosis. In the present overview we summarize the influence of each composition of PDF (acidic pH, high concentration of glucose and glucose degradation products; advanced glycation end-products and lactate) on the peritoneal fibrotic changes in long peritoneal dialysis (PD) patients. We also summarized the report of new approaches to the prevention of peritoneal fibrosis in Japan.
Collapse
Affiliation(s)
- Chieko Higuchi
- Division of Internal Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.
| | | | | |
Collapse
|
21
|
Krishnan M, Tam P, Wu G, Breborowicz A, Oreopoulos DG. Glucose degradation products (GDP's) and peritoneal changes in patients on chronic peritoneal dialysis: will new dialysis solutions prevent these changes? Int Urol Nephrol 2006; 37:409-18. [PMID: 16142577 DOI: 10.1007/s11255-004-1392-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As peritonitis rates are declining, the rate of technique failure due to ultrafiltration failure and inadequate solute removal is becoming more important. The failure of the peritoneal membrane to provide adequate dialysis increases with longer duration on PD and correlates with the structural changes in the peritoneal membrane. The exact mechanism responsible for these structural changes is unclear. Conventional PD fluids with glucose as the osmotic agent and more importantly the glucose degradation products (GDP) generated during the heat sterilization of these solutions seems to be responsible for inducing many of these changes in the peritoneum. GDP's in addition to causing structural and functional alterations of the peritoneal cells is also a leading cause of advanced glycation end-products (AGE) production. There is evidence to suggest that the GDP's and AGE's are not limited to the peritoneal cavity and the membrane. They have been shown to get deposited in the vascular walls. In addition they also interact with receptors on endothelial cells and smooth muscle. Thus they could contribute to the vascular dysfunction similar to that seen in diabetes. Formation of GDP's can be reduced and even be avoided with the use of newer "biocompatible" solutions by sterilizing the glucose and the buffer in separate chambers. These newer solutions have been shown to have several local and systemic advantages over the conventional PD solutions. It remains to be seen whether their chronic use from the start of peritoneal dialysis will prevent the development of peritoneal damage thus allowing these patients to remain on this modality for longer periods.
Collapse
Affiliation(s)
- Murali Krishnan
- The Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
22
|
BIOKID: randomized controlled trial comparing bicarbonate and lactate buffer in biocompatible peritoneal dialysis solutions in children [ISRCTN81137991]. BMC Nephrol 2004; 5:14. [PMID: 15485574 PMCID: PMC529259 DOI: 10.1186/1471-2369-5-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/14/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is the preferred dialysis modality in children. Its major drawback is the limited technique survival due to infections and progressive ultrafiltration failure. Conventional PD solutions exert marked acute and chronic toxicity to local tissues. Prolonged exposure is associated with severe histopathological alterations including vasculopathy, neoangiogenesis, submesothelial fibrosis and a gradual loss of the mesothelial cell layer. Recently, more biocompatible PD solutions containing reduced amounts of toxic glucose degradation products (GDPs) and buffered at neutral pH have been introduced into clinical practice. These solutions contain lactate, bicarbonate or a combination of both as buffer substance. Increasing evidence from clinical trials in adults and children suggests that the new PD fluids may allow for better long-term preservation of peritoneal morphology and function. However, the relative importance of the buffer in neutral-pH, low-GDP fluids is still unclear. In vitro, lactate is cytotoxic and vasoactive at the concentrations used in PD fluids. The BIOKID trial is designed to clarify the clinical significance of the buffer choice in biocompatible PD fluids. METHODS/DESIGN The objective of the study is to test the hypothesis that bicarbonate based PD solutions may allow for a better preservation of peritoneal transport characteristics in children than solutions containing lactate buffer. Secondary objectives are to assess any impact of the buffer system on acid-base status, peritoneal tissue integrity and the incidence and severity of peritonitis. After a run-in period of 2 months during which a targeted cohort of 60 patients is treated with a conventional, lactate buffered, acidic, GDP containing PD fluid, patients will be stratified according to residual renal function and type of phosphate binding medication and randomized to receive either the lactate-containing Balance solution or the bicarbonate-buffered Bicavera solution for a period of 10 months. Patients will be monitored by monthly physical and laboratory examinations. Peritoneal equilibration tests, 24-h dialysate and urine collections will be performed 4 times. Peritoneal biopsies will be obtained on occasion of intraabdominal surgery. Changes in small solute transport rates, markers of peritoneal tissue turnover in the effluent, acid-base status and peritonitis rates and severity will be analyzed.
Collapse
|
23
|
Pecoits-Filho R, Stenvinkel P, Heimbürger O, Lindholm B. Beyond the membrane—The role of new PD solutions in enhancing global biocompatibility. Kidney Int 2003:S124-32. [PMID: 14870886 DOI: 10.1046/j.1523-1755.2003.08814.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Roberto Pecoits-Filho
- Division of Baxter Novum, Department of Clinical Sciences, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Due V, Bonde J, Espersen K, Jensen TH, Perner A. Lactic acidosis in the rectal lumen of patients with septic shock measured by luminal equilibrium dialysis. Br J Anaesth 2002; 89:919-22. [PMID: 12453938 DOI: 10.1093/bja/aef289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut ischaemia may contribute to morbidity in sepsis, but little is known about the metabolic state of the gut mucosa in such patients. METHODS Nine patients with abdominal septic shock treated with norepinephrine, and ten healthy subjects, were subjected to equilibrium dialysis with a rectal balloon. pH, PCO(2) and concentrations of L-lactate were measured by auto-analyser. RESULTS In rectal dialysis fluid from patients with septic shock, acidosis was present (pH 7.23, 95% CI 7.11-7.36) and concentrations of L-lactate were approximately five times greater than controls (2.5-5.8 vs 0.5-1.2 mmol litre(-1)). The lactate concentration was related to the dose of norepinephrine (P<0.001). In contrast, values of dialysate PCO(2) did not differ significantly between patients and controls (6.4-11.0 vs 8.9-13.8 kPa). CONCLUSIONS The results suggest that, either lactic acidosis in rectal mucosa is related to shock severity, or that norepinephrine causes mucosal ischaemia. In any case, metabolic dysfunction is present in the rectal mucosa in patients with abdominal septic shock treated with norepinephrine.
Collapse
Affiliation(s)
- V Due
- Department of Anaesthesia and Intensive Care, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
25
|
Stigant CE, Bargman JM. What's new in peritoneal dialysis: biocompatibility and continuous flow peritoneal dialysis. Curr Opin Nephrol Hypertens 2002; 11:597-602. [PMID: 12394604 DOI: 10.1097/00041552-200211000-00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review examines recent developments in the understanding of the effect of conventional, bioincompatible peritoneal dialysis fluids on structural and functional changes in the peritoneal membrane. Emphasis is placed on the clinically relevant outcome of failure of long-term peritoneal dialysis. Therapeutic strategies to prevent technique failure, including the use of new peritoneal dialysis fluids and continuous flow peritoneal dialysis, are explored. RECENT FINDINGS Long-term (greater than 6 months) exposure to new peritoneal dialysis fluids with physiologic pH, lower lactate concentrations, or lower concentrations of glucose degradation products results in improved leukocyte cytokine release, ultrafiltration, and mesothelial cell mass, respectively. Continuous flow peritoneal dialysis allows efficient small molecule removal using dialysate with lower glucose concentration and possibly less glucose degradation products. Recent technical advances include creation of a double-lumen peritoneal dialysis catheter, and methods of monitoring intra-abdominal pressure and ultrafiltration. SUMMARY Though initial reports with biocompatible peritoneal dialysis fluids are promising, the efficacy of these new solutions in preventing long-term peritoneal dialysis failure is unproven. Conditions in which new peritoneal dialysis fluids may be beneficial are suggested. Continuous flow peritoneal dialysis requires substantial technical improvements before this technique can be widely accepted.
Collapse
Affiliation(s)
- Caroline E Stigant
- Department of Medicine, University of Toronto, Toronto General Hospital, Ontario, Canada
| | | |
Collapse
|