1
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
2
|
Artificial Kidney Engineering: The Development of Dialysis Membranes for Blood Purification. MEMBRANES 2022; 12:membranes12020177. [PMID: 35207097 PMCID: PMC8876607 DOI: 10.3390/membranes12020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
The artificial kidney, one of the greatest medical inventions in the 20th century, has saved innumerable lives with end stage renal disease. Designs of artificial kidney evolved dramatically in decades of development. A hollow-fibered membrane with well controlled blood and dialysate flow became the major design of the modern artificial kidney. Although they have been well established to prolong patients’ lives, the modern blood purification system is still imperfect. Patient’s quality of life, complications, and lack of metabolic functions are shortcomings of current blood purification treatment. The direction of future artificial kidneys is toward miniaturization, better biocompatibility, and providing metabolic functions. Studies and trials of silicon nanopore membranes, tissue engineering for renal cell bioreactors, and dialysate regeneration are all under development to overcome the shortcomings of current artificial kidneys. With all these advancements, wearable or implantable artificial kidneys will be achievable.
Collapse
|
3
|
Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Canaud B, Kooman JP, Selby NM, Taal MW, Francis S, Maierhofer A, Kopperschmidt P, Collins A, Kotanko P. Dialysis-Induced Cardiovascular and Multiorgan Morbidity. Kidney Int Rep 2020; 5:1856-1869. [PMID: 33163709 PMCID: PMC7609914 DOI: 10.1016/j.ekir.2020.08.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hemodialysis has saved many lives, albeit with significant residual mortality. Although poor outcomes may reflect advanced age and comorbid conditions, hemodialysis per se may harm patients, contributing to morbidity and perhaps mortality. Systemic circulatory "stress" resulting from hemodialysis treatment schedule may act as a disease modifier, resulting in a multiorgan injury superimposed on preexistent comorbidities. New functional intradialytic imaging (i.e., echocardiography, cardiac magnetic resonance imaging [MRI]) and kinetic of specific cardiac biomarkers (i.e., Troponin I) have clearly documented this additional source of end-organ damage. In this context, several factors resulting from patient-hemodialysis interaction and/or patient management have been identified. Intradialytic hypovolemia, hypotensive episodes, hypoxemia, solutes, and electrolyte fluxes as well as cardiac arrhythmias are among the contributing factors to systemic circulatory stress that are induced by hemodialysis. Additionally, these factors contribute to patients' symptom burden, impair cognitive function, and finally have a negative impact on patients' perception and quality of life. In this review, we summarize the adverse systemic effects of current intermittent hemodialysis therapy, their pathophysiologic consequences, review the evidence for interventions that are cardioprotective, and explore new approaches that may further reduce the systemic burden of hemodialysis. These include improved biocompatible materials, smart dialysis machines that automatically may control the fluxes of solutes and electrolytes, volume and hemodynamic control, health trackers, and potentially disruptive technologies facilitating a more personalized medicine approach.
Collapse
Affiliation(s)
- Bernard Canaud
- Montpellier University, Montpellier, France
- GMO, FMC, Bad Homburg, Germany
| | - Jeroen P. Kooman
- Maastricht University Medical Centre, Department of Internal Medicine, Maastricht, Netherlands
| | - Nicholas M. Selby
- Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK
| | - Maarten W. Taal
- Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK
| | - Susan Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
| | | | | | | | - Peter Kotanko
- Renal Research Institute, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Wang Z, Sun W, Wei Z, Bao J, Song X, Li Y, Ji H, Zhang J, He C, Su B, Zhao W, Zhao C. Selective potassium uptake via biocompatible zeolite-polymer hybrid microbeads as promising binders for hyperkalemia. Bioact Mater 2020; 6:543-558. [PMID: 32995679 PMCID: PMC7498761 DOI: 10.1016/j.bioactmat.2020.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
Patients with chronic kidney disease are at high risk of hyperkalemia that is associated with various life-threatening complications. Treatments primarily rely on orally administered potassium binding agents, along with low curative effects and various side effects. Herein, direct serum potassium uptake was realized via zeolite–heparin-mimicking-polymer hybrid microbeads. The preparation process involved the synthesis of the heparin-mimicking polymer via the in situ cross-linking polymerization of acrylic acid and N-vinylpyrrolidone in polyethersulfone solution, the fabrication of microbeads via zeolite-mixing, electro-spraying and phase-inversion, and the subsequent aqueous-phase modifications based on ion-exchange and metal-leaching. An ultra-high (about 88%) amount of zeolite could be incorporated and well locked inside the polymer matrix. Potassium uptake capability was verified in water, normal saline and human serum, showing high selectivity and fast adsorption. The microbeads exhibited satisfying blood compatibility, negligible hemolysis ratio, prolonged clotting time, inhibited contact activation, and enhanced antifouling property toward serum proteins and cells. The proposed approach toward zeolite–heparin-mimicking-polymer hybrid microbeads provided a cheap, efficient and safe treatment protocol of hyperkalemia for the high-risk patients. Zeolite–heparin-mimicking-polymer hybrid microbeads were prepared for potassium uptake. An ultra-high (~88%) amount of zeolite could be well locked inside the polymer matrix. Potassium uptake by microbeads exhibited high selectivity and fast adsorption. The microbeads exhibited excellent blood compatibility. The proposed method is cheap, efficient and safe to treat hyperkalemia.
Collapse
Affiliation(s)
- Zhoujun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Sun
- Laboratory Department of General Hospital of Western Theatek Command, Chengdu, 610000, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yupei Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Haifeng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610207, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Basile C, Davenport A, Mitra S, Pal A, Stamatialis D, Chrysochou C, Kirmizis D. Frontiers in hemodialysis: Innovations and technological advances. Artif Organs 2020; 45:175-182. [PMID: 32780472 DOI: 10.1111/aor.13798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
As increasing demand for hemodialysis (HD) treatment incurs significant financial burden to healthcare systems and ecological burden as well, novel therapeutic approaches as well as innovations and technological advances are being sought that could lead to the development of purification devices such as dialyzers with improved characteristics and wearable technology. Novel knowledge such as the development of more accurate kinetic models, the development of novel HD membranes with the use of nanotechnology, novel manufacturing processes, and the latest technology in the science of materials have enabled novel solutions already marketed or on the verge of becoming commercially available. This collaborative article reviews the latest advances in HD as they were presented by the authors in a recent symposium titled "Frontiers in Haemodialysis," held on 12th December 2019 at the Royal Society of Medicine in London.
Collapse
Affiliation(s)
- Carlo Basile
- Clinical Research Branch, Division of Nephrology, Miulli General Hospital, Acquaviva delle Fonti, Italy.,Associazione Nefrologica Gabriella Sebastio, Martina Franca, Italy
| | - Andrew Davenport
- UCL Department of Nephrology, Royal Free Hospital, University College London, London, UK
| | - Sandip Mitra
- Department of Nephrology, Manchester University Hospitals Foundation Trust, Manchester, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Avishek Pal
- National Graphene Institute, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Dimitrios Stamatialis
- Bioartificial Organs Group, Department of Biomaterials Science and Technology, TechMed Centre, Faculty of Science and Technology, University of Twente, The Netherlands
| | | | | |
Collapse
|
7
|
Dang BV, Taylor RA, Charlton AJ, Le-Clech P, Barber TJ. Toward Portable Artificial Kidneys: The Role of Advanced Microfluidics and Membrane Technologies in Implantable Systems. IEEE Rev Biomed Eng 2020; 13:261-279. [DOI: 10.1109/rbme.2019.2933339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Sarode DN, Roy S. In Vitro models for thrombogenicity testing of blood-recirculating medical devices. Expert Rev Med Devices 2019; 16:603-616. [PMID: 31154869 DOI: 10.1080/17434440.2019.1627199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Blood-recirculating medical devices, such as mechanical circulatory support (MCS), extracorporeal membrane oxygenators (ECMO), and hemodialyzers, are commonly used to treat or improve quality of life in patients with cardiac, pulmonary, and renal failure, respectively. As part of their regulatory approval, guidelines for thrombosis evaluation in pre-clinical development have been established. In vitro testing evaluates a device's potential to produce thrombosis markers in static and dynamic flow loops. AREAS COVERED This review focuses on in vitro static and dynamic models to assess thrombosis in blood-recirculating medical devices. A summary of key devices is followed by a review of molecular markers of contact activation. Current thrombosis testing guidance documents, ISO 10993-4, ASTM F-2888, and F-2382 will be discussed, followed by analysis of their application to in vitro testing models. EXPERT OPINION In general, researchers have favored in vivo models to thoroughly evaluate thrombosis, limiting in vitro evaluation to hemolysis. In vitro studies are not standardized and it is often difficult to compare studies on similar devices. As blood-recirculating devices have advanced to include wearable and implantable artificial organs, expanded guidelines standardizing in vitro testing are needed to identify the thrombotic potential without excessive use of in vivo resources during pre-clinical development.
Collapse
Affiliation(s)
- Deepika N Sarode
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| | - Shuvo Roy
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| |
Collapse
|
9
|
Sultan MT, Moon BM, Yang JW, Lee OJ, Kim SH, Lee JS, Lee YJ, Seo YB, Kim DY, Ajiteru O, Sung GY, Park CH. Recirculating peritoneal dialysis system using urease-fixed silk fibroin membrane filter with spherical carbonaceous adsorbent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:55-66. [PMID: 30678941 DOI: 10.1016/j.msec.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
The chronic kidney disease (CKD) patients are undergoing continuous ambulatory peritoneal dialysis (CAPD). However, there are some constraints, the frequent exchange of the dialysate and limitation of outside activity, associated with CAPD remain to be solved. In this study, we designed the wearable artificial kidney (WAK) system for peritoneal dialysis (PD) using urease-immobilized silk fibroin (SF) membrane and polymer-based spherical carbonaceous adsorbent (PSCA). We evaluated this kit's removal abilities of uremic toxins such as urea, creatinine, uric acid, phosphorus, and β2-microglobulin from the dialysate of end-stage renal disease (ESRD) patients in vitro. The uremic toxins including urea, creatinine, uric acid, and phosphorus were removed about 99% by immobilized SF membrane and PSCA filter after 24 h treatment. However, only 50% of β2-microglobulin was removed by this filtering system after 24 h treatment. In vivo study result shows that our filtering system has more uremic toxins removal efficiency than exchanged dialysate at every 6 h. We suggest that recirculating PD system using urease-immobilized SF membrane with PSCA could be more efficient than traditional dialysate exchange system for a WAK for PD.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Bo Mi Moon
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 220-701, Republic of Korea
| | - Ok Joo Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Soon Hee Kim
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji Seung Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Young Jin Lee
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ye Been Seo
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Do Yeon Kim
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Gun Yong Sung
- Department of Materials Science and Engineering, College of Information and Electronic Engineering, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Chan Hum Park
- Nano-Bioregenerative Medical Institute, Hallym University, Chuncheon, Gangwon-do, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
10
|
Abstract
The objectives of hemodialysis have moved from the diffusive clearance of small molecular weight uremic toxins and achieving dialyzer urea adequacy targets to emphasis on improving clinical outcomes in end stage renal failure patients by increasing larger sized uremic toxin clearance. Clinical emphasis in the last few decades has focused on increasing middle molecule weight toxin clearance by hemodiafiltration. Although long-term data is still lacking, short-term outcomes appear promising. Advancements in nanotechnology have now introduction a new generation of medium cut-off membrane dialyzers which allow diffusive clearance of similar middle molecular weight uremia toxin clearance as hemodiafiltration, without increased albumin losses. As these dialyzers have only recently been introduced into clinical practice, no long-term outcomes are available to determine the relative benefits or advantages of this approach. As dialyzers are now designed to maximize diffusive or convective clearance, or provide a combination, then clinicians can now choose dialyzers tailored to the individual patient needs depending on clinical circumstances. We review the key important features in choosing a dialyzer for patients with end stage renal failure and acute kidney injury.
Collapse
Affiliation(s)
- Sabrina Haroon
- National University Hospital, UCL department of renal medicine, London, UK
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
11
|
Salani M, Roy S, Fissell WH. Innovations in Wearable and Implantable Artificial Kidneys. Am J Kidney Dis 2018; 72:745-751. [PMID: 30146422 DOI: 10.1053/j.ajkd.2018.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 06/04/2018] [Indexed: 11/11/2022]
Abstract
More than 2 million people worldwide receive treatment for end-stage renal disease (ESRD). Current modalities of renal replacement therapy include in-center hemodialysis, peritoneal dialysis, home hemodialysis, and kidney transplantation. Patient survival has gradually increased during the past 2 decades and efforts continue to improve mortality and quality of life for patients with ESRD. Developments in sorbent technology, nanotechnology, and cell culture techniques provide promise for new innovations in ESRD management. New modalities currently in testing include wearable (WAKs) and implantable artificial kidneys (IAKs). The automated WAK (AWAK) and WAK are devices that have undergone small trials in humans. Additional study is needed before regulatory approval, coverage decisions, and widespread clinical implementation. The IAK is a biohybrid combining artificial filters and living cells currently in preclinical testing. These portable devices reduce the need for large quantities of water and continuous electrical supply. This could lower some barriers to home dialysis, making self-care renal replacement therapy more accessible and desirable. If widely successful, these devices could reduce the need to build and staff dialysis facilities, thus lowering health care costs associated with dialysis. The potential advantages and shortcomings of the AWAK, WAK, and IAK are described here.
Collapse
Affiliation(s)
- Megha Salani
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN
| | - Shuvo Roy
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - William H Fissell
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
12
|
Nanofibrous Tubular Membrane for Blood Hemodialysis. Appl Biochem Biotechnol 2018; 186:443-458. [PMID: 29644596 DOI: 10.1007/s12010-018-2744-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients' blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.
Collapse
|
13
|
Zhang Z, Xian J, Zhang C, Fu D. Degradation of creatinine using boron-doped diamond electrode: Statistical modeling and degradation mechanism. CHEMOSPHERE 2017; 182:441-449. [PMID: 28521158 DOI: 10.1016/j.chemosphere.2017.05.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the degradation performance and mechanism of creatinine (a urine metabolite) with boron-doped diamond (BDD) anodes. Experiments were performed using a synthetic creatinine solution containing two supporting electrolytes (NaCl and Na2SO4). A three-level central composite design was adopted to optimize the degradation process, a mathematical model was thus constructed and used to explore the optimum operating conditions. A maximum mineralization percentage of 80% following with full creatinine removal had been achieved within 120 min of electrolysis, confirming the strong oxidation capability of BDD anodes. Moreover, the results obtained suggested that supporting electrolyte concentration should be listed as one of the most important parameters in BDD technology. Lastly, based on the results from quantum chemistry calculations and LC/MS analyses, two different reaction pathways which governed the electrocatalytic oxidation of creatinine irrespective of the supporting electrolytes were identified.
Collapse
Affiliation(s)
- Zhefeng Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Xian
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyong Zhang
- Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
14
|
Surface-Engineered Blood Adsorption Device for Hyperphosphatemia Treatment. ASAIO J 2017; 64:389-394. [PMID: 28799951 DOI: 10.1097/mat.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Correspondence: Melanie S. Joy, PharmD, PhD, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, Room V20-4108, 12850 East Montview Blvd, Aurora, CO 80045. Email: Melanie.Joy@ucdenver.edu The research employed surface engineering methods to develop, optimize, and characterize a novel textile-based hemoadsorption device for hyperphosphatemia in hemodialysis-dependent end-stage kidney disease. Phosphate adsorbent fabrics (PAFs) were prepared by thermopressing alumina powders to polyester filtration fabrics and treatment with trimesic acid (TMA). For static experiments, phosphate adsorption capacity in buffer solution, plasma, and blood were evaluated by submersing the PAFs in 100 ml. For dynamic experiments, PAFs were equipped in a device prototype and incorporated in a pump-driven circuit. Phosphates were determined by a colorimetric assay and an Ortho Clinical Diagnostics Vitros 5600 Integrated analyzer. The maximum loading amount of TMA-alumina on PAFs was approximately 35 g/m under 260°C processing temperature. Phosphate adsorption capacity increased with initial concentration. Adsorption isotherms from buffer demonstrated a maximum phosphate adsorption capacity of approximately 893 mg/m at 37.5°C, pH 7.4, with similar results from plasma and whole blood. Measured phosphate concentrations during simulations demonstrated a 42% reduction, confirming the high capacity of the PAFs for removing phosphate from whole blood. Results from the current study indicated that an alumina-TMA treated PAF can dramatically reduce phosphate concentrations from biological samples. The technology could potentially be used as a tunable adsorbent for managing hyperphosphatemia in kidney disease.
Collapse
|
15
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
16
|
Davenport A. A wearable dialysis device: the first step to continuous therapy. Nat Rev Nephrol 2016; 12:512-4. [DOI: 10.1038/nrneph.2016.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Gura V, Rivara MB, Bieber S, Munshi R, Smith NC, Linke L, Kundzins J, Beizai M, Ezon C, Kessler L, Himmelfarb J. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight 2016; 1:86397. [PMID: 27398407 DOI: 10.1172/jci.insight.86397] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Stationary hemodialysis machines hinder mobility and limit activities of daily life during dialysis treatments. New hemodialysis technologies are needed to improve patient autonomy and enhance quality of life. METHODS We conducted a FDA-approved human trial of a wearable artificial kidney, a miniaturized, wearable hemodialysis machine, based on dialysate-regenerating sorbent technology. We aimed to determine the efficacy of the wearable artificial kidney in achieving solute, electrolyte, and volume homeostasis in up to 10 subjects over 24 hours. RESULTS During the study, all subjects remained hemodynamically stable, and there were no serious adverse events. Serum electrolytes and hemoglobin remained stable over the treatment period for all subjects. Fluid removal was consistent with prescribed ultrafiltration rates. Mean blood flow was 42 ± 24 ml/min, and mean dialysate flow was 43 ± 20 ml/min. Mean urea, creatinine, and phosphorus clearances over 24 hours were 17 ± 10, 16 ± 8, and 15 ± 9 ml/min, respectively. Mean β2-microglobulin clearance was 5 ± 4 ml/min. Of 7 enrolled subjects, 5 completed the planned 24 hours of study treatment. The trial was stopped after the seventh subject due to device-related technical problems, including excessive carbon dioxide bubbles in the dialysate circuit and variable blood and dialysate flows. CONCLUSION Treatment with the wearable artificial kidney was well tolerated and resulted in effective uremic solute clearance and maintenance of electrolyte and fluid homeostasis. These results serve as proof of concept that, after redesign to overcome observed technical problems, a wearable artificial kidney can be developed as a viable novel alternative dialysis technology. TRIAL REGISTRATION ClinicalTrials.gov NCT02280005. FUNDING The Wearable Artificial Kidney Foundation and Blood Purification Technologies Inc.
Collapse
Affiliation(s)
- Victor Gura
- Cedars-Sinai Medical Center, Los Angeles, California, USA.,David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Matthew B Rivara
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Scott Bieber
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Raj Munshi
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, Washington, USA
| | - Nancy Colobong Smith
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,University of Washington Medical Center, Seattle, Washington, USA
| | - Lori Linke
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - John Kundzins
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| | - Masoud Beizai
- Blood Purification Technologies Inc., Beverly Hills, California, USA
| | - Carlos Ezon
- Blood Purification Technologies Inc., Beverly Hills, California, USA
| | - Larry Kessler
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA.,Department of Health Services, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Armignacco P, Garzotto F, Bellini C, Neri M, Lorenzin A, Sartori M, Ronco C. Pumps in wearable ultrafiltration devices: pumps in wuf devices. Blood Purif 2015; 39:115-24. [PMID: 25659605 DOI: 10.1159/000368943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features.
Collapse
|
19
|
Davenport A. Portable and wearable dialysis devices for the treatment of patients with end-stage kidney failure: Wishful thinking or just over the horizon? Pediatr Nephrol 2015; 30:2053-60. [PMID: 25330876 PMCID: PMC4623087 DOI: 10.1007/s00467-014-2968-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
Dialysis is a life-sustaining treatment for patients with end-stage kidney disease. In a different context, for many patients this treatment is the focal point around which their life revolves, not only due to the time spent travelling to and from treatment sessions and the time dedicated to the dialysis treatment itself, but also due to the accompanying dietary and fluid restrictions and medication burden. Wearable and portable dialysis devices could potentially improve patient quality of life by allowing patients to continue with their daily activities of life while undergoing dialysis, as well as by loosening-or removing entirely-dietary and fluid restrictions and reducing pill burden. Advances in nanotechnology manufacturing coupled with advances in electronics and miniaturisation have allowed a new generation of wearable and portable dialysis devices to be developed which are now undergoing large animal and patient clinical trials. We are therefore potentially at a new dawn in the treatment of dialysis patients with the first generation of wearable and portable dialysis devices, which may well revolutionise the treatment and quality of life for patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
20
|
Davenport A. How can dialyzer designs improve solute clearances for hemodialysis patients? Hemodial Int 2014; 18 Suppl 1:S43-7. [DOI: 10.1111/hdi.12223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Davenport
- UCL Centre for Nephrology; Royal Free Hospital; University College London Medical School; London UK
| |
Collapse
|
21
|
Kim S, Roy S. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology. Adv Chronic Kidney Dis 2013; 20:516-35. [PMID: 24206604 PMCID: PMC3866020 DOI: 10.1053/j.ackd.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 11/11/2022]
Abstract
Microelectromechanical systems (MEMS) are playing a prominent role in the development of many new and innovative biomedical devices, but they remain a relatively underused technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS-based technologies in device designs and applications. This enthusiasm stems from the ability to create small-scale device features with high precision in a cost-effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS.
Collapse
Affiliation(s)
- Steven Kim
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA 94158
- Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94158
| | - Shuvo Roy
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
22
|
Fissell WH, Roy S, Davenport A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int 2013; 84:256-64. [DOI: 10.1038/ki.2012.466] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 11/09/2022]
|
23
|
Novel techniques and innovation in blood purification: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 2013; 83:359-71. [DOI: 10.1038/ki.2012.450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
|
25
|
|
26
|
Abstract
Traditionally, the amount of hemodialysis prescribed for a patient has been based on urea clearance, as urea is not only retained in patients with chronic kidney disease, but also readily measurable, by reliable and inexpensive assays. More recently, other retained solutes, phosphate, β2 microglobulin, and latterly p-cresol have been reported to be associated with increased risk of mortality in hemodialysis patients. As such, developments in dialysis practice that would result in greater clearance of water-soluble middle-sized toxins and also protein-bound and/or organic solutes are being studied. Although session time is a key factor, switching from low flux to dialyzers with larger pores, the addition of convective transport with hemodiafiltration can help increase phosphate and β2 microglobulin clearances. Adsorption techniques can increase the clearance of organic and protein bound toxins either directly or indirectly by regenerating dialysate and ultrafiltrates.
Collapse
Affiliation(s)
- Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, London, UK.
| |
Collapse
|
27
|
|
28
|
Perin L, Da Sacco S, De Filippo RE. Regenerative medicine of the kidney. Adv Drug Deliv Rev 2011; 63:379-87. [PMID: 21145933 DOI: 10.1016/j.addr.2010.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/23/2010] [Accepted: 12/01/2010] [Indexed: 01/19/2023]
Abstract
End stage renal disease is a major health problem in this country and worldwide. Although dialysis and kidney transplantation are currently used to treat this condition, kidney regeneration resulting in complete healing would be a desirable alternative. In this review we focus our attention on current therapeutic approaches used clinically to delay the onset of kidney failure. In addition we describe novel approaches, like Tissue Engineering, Stem cell Applications, Gene Therapy, and Renal Replacement Therapy that may one day be possible alternative therapies for patients with the hope of delaying kidney failure or even stopping the progression of renal disease.
Collapse
|
29
|
Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, Ying JY, Zink D. Achievements and challenges in bioartificial kidney development. FIBROGENESIS & TISSUE REPAIR 2010; 3:14. [PMID: 20698955 PMCID: PMC2925816 DOI: 10.1186/1755-1536-3-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rambod E, Beizai M, Rosenfeld M. An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer. Biomed Eng Online 2010; 9:21. [PMID: 20497572 PMCID: PMC2881054 DOI: 10.1186/1475-925x-9-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/24/2010] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Published studies of the past decades have established that mass transfer across the dialyzer membrane is governed by diffusion, convection and osmosis. While the former is independent of the pressure in the liquids, the latter two are pressure dependent and are enhanced when the pressure difference across the membrane is increased. The goal of the present study is to examine the impact of pulsatile flow on the transport phenomena across the membrane of a high-flux dialyzer in a wearable artificial kidney (WAK) with a novel single small battery-operated pulsatile pump that drives both the blood and dialysate in a counter-phased manner, maximizing the trans-membrane pressure. METHODS Both in-vitro experimental and numerical tools are employed to compare the performance of the pulsatile WAK dialyzer with a traditional design of a single-channel roller blood pump together with a centrifugal pump that drives the dialysate flow. The numerical methods utilize the axisymmetric Navier-Stokes and mass transfer equations to model the flow in the fibers of the dialyzer. RESULTS While diffusion is still the dominating transport regime, the WAK pump enhances substantially the trans-membrane pressure and thus increases mass convection that might be as high as 30% of the overall transfer. This increase is obtained due to the design of the pulsatile WAK pump that increases ultrafiltration by increasing the trans-membrane pressure. CONCLUSIONS The experimental and numerical results revealed that when pumping at similar flow rates, a small battery-operated pulsatile pump provides clearances of urea and creatinine similar as or better than a large heavy AC-powered roller pump.
Collapse
Affiliation(s)
- Edmond Rambod
- BioQuantetics, Inc., 11731 Folkstone Lane, Los Angeles, CA 90077 USA
| | - Masoud Beizai
- BioQuantetics, Inc., 11731 Folkstone Lane, Los Angeles, CA 90077 USA
| | - Moshe Rosenfeld
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
31
|
Rastogi A, Nissenson AR. Technological Advances in Renal Replacement Therapy. Clin J Am Soc Nephrol 2009; 4:S132-S136. [DOI: 10.2215/cjn.02860409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Davenport A, Gardner C, Delaney M. The effect of dialysis modality on phosphate control : haemodialysis compared to haemodiafiltration. The Pan Thames Renal Audit. Nephrol Dial Transplant 2009; 25:897-901. [PMID: 19875379 DOI: 10.1093/ndt/gfp560] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Hyperphosphataemia is a primary risk factor for patients with end-stage kidney failure. Phosphate clearance by traditional thrice-weekly standard haemodialysis is inadequate for patients achieving recommended dietary protein goals. We investigated whether phosphate control was improved by adding convective clearance with haemodiafiltration. METHODS We audited pre-midweek session calcium and phosphate levels in 5366 adult patients, 4515 treated by haemodialysis and 851 by on-line haemodiafiltration. RESULTS The cohorts were similar for age, sex and dialysis vintage. Serum phosphate was lower in the haemodiafiltration cohort (1.42 +/- 0.61 mmol/l) compared to the haemodialysis cohort (1.53 +/- 0.53 mmol/l; P < 0.001), as was the calcium-phosphate product (3.31 +/- 1.53 vs 3.5 +/- 1.33 mmol(2)/l(2), respectively; P < 0.001) despite a shorter treatment session time (3.68 +/- 0.44 vs 3.92 +/- 0.49 h; P < 0.001). Parathyroid hormone levels were similar. CONCLUSIONS The results of this audit suggest that haemodiafiltration offers improved phosphate control compared to standard intermittent haemodialysis.
Collapse
Affiliation(s)
- Andrew Davenport
- UCL Centre for Nephrology, Royal Free Campus, University College London Medical School London, UK.
| | | | | | | |
Collapse
|
33
|
In brief. Nat Rev Nephrol 2009. [DOI: 10.1038/nrneph.2009.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Gura V, Macy AS, Beizai M, Ezon C, Golper TA. Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol 2009; 4:1441-8. [PMID: 19696219 DOI: 10.2215/cjn.02790409] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The wearable artificial kidney (WAK) has been a holy grail in kidney failure for decades. Described herein are the breakthroughs that made possible the creation of the WAK V1.0 and its advanced versions V 1.1 and 1.2. DESIGN The battery-powered WAK pump has a double channel pulsatile counter phase flow. This study clarifies the role of pulsatile blood and dialysate flow, a high-flux membrane with a larger surface area, and the optimization of the dialysate pH. Flows and clearances from the WAK pump were compared with conventional pumps and with gravity steady flow. RESULTS Raising dialysate pH to 7.4 increased adsorption of ammonia. Clearances were higher with pulsatile flow as compared with steady flow. The light WAK pump, geometrically suitable for wearability, delivered the same clearances as larger and heavier pumps that cannot be battery operated. Beta(2) microglobulin (beta(2)M) was removed from human blood in vitro. Activated charcoal adsorbed most beta(2)M in the dialysate. The WAK V1.0 delivered an effective creatinine clearance of 18.5 +/- 3.2 ml/min and the WAK V1.1 27.0 +/- 4.0 ml/min in uremic pigs. CONCLUSIONS Half-cycle differences between blood and dialysate, alternating transmembrane pressures (TMP), higher amplitude pulsations, and a push-pull flow increased convective transport. This creates a yet undescribed type of hemodiafiltration. Further improvements were achieved with a larger surface area high-flux dialyzer and a higher dialysate pH. The data suggest that the WAK might be an efficient way of providing daily dialysis and optimizing end stage renal disease (ESRD) treatment.
Collapse
Affiliation(s)
- Victor Gura
- Cedars-Sinai Medical Center, Los Angeles, California 90212, USA.
| | | | | | | | | |
Collapse
|