1
|
Wang Z, You Q, Wang Y, Wang J, Shao L. Global, regional, and national burden of chronic kidney disease among adolescents and emerging adults from 1990 to 2021. Ren Fail 2025; 47:2508296. [PMID: 40405338 PMCID: PMC12101043 DOI: 10.1080/0886022x.2025.2508296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND AND AIMS There are limited studies on the epidemiology of chronic kidney disease (CKD) burden among adolescents and emerging adults. We aimed to assess the global, regional, and national trends in CKD burden among adolescents and emerging adults. METHODS The Global Burden of Disease 2021 study was utilized to evaluate the incidence, prevalence, mortality, disability-adjusted life years (DALYs) and average annual percentage changes (AAPC) in CKD among populations aged 15 to 29 years from 1990 to 2021. RESULTS From 1990 to 2021, age-standardized incidence (AAPC: 0.85%, 95% uncertainty interval [95% UI]: 0.81%-0.88%), prevalence (AAPC: 0.22%, 95% UI: 0.19%-0.25%), and mortality (AAPC: 0.18%, 95% UI: 0.04%-0.32%) rates of CKD have risen globally among adolescents and emerging adults. In 2021, Southeast Asia had the highest age-standardized prevalence (5370.39 [95% UI: 4060.97-6929.79] per 100,000 population), while Central sub-Saharan Africa had the highest mortality rate (5.05 [95% UI: 3.49-7] per 100,000 population). In 2021, glomerulonephritis and 'other and unspecified causes' accounted for 94% of new cases, 83% of prevalent cases, and 92% of mortality cases. Frontier analyses suggest that regions at varying stages of development still hold substantial potential for further improvements in addressing CKD. CONCLUSION Globally, the burden of CKD among adolescents and emerging adults continues to rise, with Southeast Asia and sub-Saharan Africa bearing a disproportionate burden. Nevertheless, there remain substantial opportunities across all levels of the development spectrum to alleviate the CKD burden through enhanced health interventions and resource allocation.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Nephrology, (Fujian Provincial Clinical Research Center for Glomerular Nephritis), The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, China
| | - Qingqing You
- Department of Nephrology, Qingdao Municipal Hospital (Group), Qingdao Hospital of University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yuxuan Wang
- Department of Emergency, Qingdao Municipal Hospital (Group), Qingdao Hospital of University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jufei Wang
- Department of Nephrology, (Fujian Provincial Clinical Research Center for Glomerular Nephritis), The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, China
| | - Leping Shao
- Department of Nephrology, (Fujian Provincial Clinical Research Center for Glomerular Nephritis), The First Affiliated Hospital of Xiamen University, Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Elattar S, Chand S, Salem A, Abdulfattah AY, Bassiony M, Frishman WH, Aronow WS. Obesity and Hypertension: Etiology and the Effects of Diet, Bariatric Surgery, and Antiobesity Drugs. Cardiol Rev 2025:00045415-990000000-00477. [PMID: 40265912 DOI: 10.1097/crd.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Obesity-related hypertension (HTN) is a growing global health concern, being a significant contributor to cardiovascular morbidity and mortality. The article reviews the complex pathophysiological mechanisms involved in the link between obesity and HTN, including neurohormonal activation, inflammation, insulin resistance, and endothelial dysfunction. The role of adipokines, specifically leptin and adiponectin, in blood pressure regulation is highlighted, along with the impact of advanced glycation end-products on vascular function. We discuss the effectiveness of lifestyle therapies, including weight loss, and diet for the management of obesity HTN. We also discuss the utilization of pharmacologic agents, including GLP-1 receptor agonists, and the impact of bariatric surgery on long-term blood pressure control. Despite enhanced treatment, significant barriers to treatment exist, including obesity stigma, limited access to health care, and adherence problems. Future research must focus on personalized approaches, like pharmacogenomics, to optimize hypertension treatment in the obese.
Collapse
Affiliation(s)
- Sara Elattar
- From the Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Swati Chand
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Amr Salem
- Department of Neurology, Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Ammar Y Abdulfattah
- Department of Internal Medicine, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Mohamed Bassiony
- Department of Medicine, Mount Sina Medical Center at Elmhurst, NY
| | | | - Wilbert S Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
3
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
4
|
Kanbay M, Siriopol D, Mahmoud Abdel-Rahman S, Yilmaz ZY, Ozbek L, Guldan M, Copur S, Tuttle KR. Impact of weight change on kidney transplantation outcomes: A systematic review and meta-analysis. Diabetes Obes Metab 2025; 27:1369-1378. [PMID: 39691978 DOI: 10.1111/dom.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND AND AIM Kidney transplant recipients frequently experience a wide range of metabolic complications, including weight changes, which significantly impact patient outcomes and graft function, yet the relationship between weight gain and transplant outcomes remains poorly understood. This systematic review and meta-analysis aimed to synthesise existing evidence on the influence of weight gain on patient and graft outcomes following kidney transplantation to enhance clinical practice and optimise post-transplant care strategies. MATERIALS AND METHODS A literature search was conducted across databases such as PubMed and Scopus for peer-reviewed studies published up to 8 August 2024. We included adult kidney transplant recipients (ages 18 years and older) with substantial and clinically relevant post-transplant weight gain and a control group without such changes, focusing on outcomes including all-cause mortality, graft survival, cardiovascular events and acute rejection. RESULTS The pooled analysis, which included data from 11 studies, indicated no significant association between post-transplant weight gain and the risk of all-cause mortality (hazard ratio [HR] 1.21, 95% confidence interval [CI] 0.69 to 2.10, p = 0.51; I2 = 28%), cardiovascular events (HR 0.93, 95% CI 0.43 to 2.01, p = 0.85; I2 = 32%) or acute rejection (HR 1.13, 95% CI 0.76 to 1.68, p = 0.55; I2 = 9%). However, weight gain was significantly associated with an increased risk of graft failure (HR 1.58, 95% CI 1.22 to 2.05, p < 0.001; I2 = 0%). CONCLUSION Substantial and clinically relevant weight gain after kidney transplant was associated with a higher risk of graft failure. Within the timeframes of study observation, risks of all-cause mortality, cardiovascular events or acute rejection were not increased by weight gain in kidney transplant recipients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Suceava, Romania
| | - Sama Mahmoud Abdel-Rahman
- Division of Nephrology and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Zeynep Y Yilmaz
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Katherine R Tuttle
- Division of Nephrology and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA, USA
- Providence Medical Research Center, Providence Inland Northwest Health, Spokane, Washington, USA
| |
Collapse
|
5
|
Verde L, Barrea L, Galasso M, Lucà S, Camajani E, Pisani A, Colao A, Caprio M, Muscogiuri G. Efficacy and Safety of Phase 1 of Very Low Energy Ketogenic Therapy (VLEKT) in Subjects with Obesity and Mild Renal Impairment. Nutrients 2025; 17:721. [PMID: 40005050 PMCID: PMC11857918 DOI: 10.3390/nu17040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Obesity impairs renal function through direct mechanisms, such as proinflammatory adipocytokine production, and indirect mechanisms, including obesity-related comorbidities. Despite the increasing prevalence of obesity and chronic kidney disease (CKD), clinical guidelines for their combined management remain lacking. Very Low Energy Ketogenic Therapy (VLEKT) has demonstrated efficacy in weight loss, but evidence on its safety and efficacy in individuals with obesity and mild renal impairment is limited. This study aimed to assess the efficacy and safety of Phase 1 of VLEKT in individuals with obesity and mild renal impairment. Methods: This cross-sectional study included 73 individuals with overweight or obesity (mean age 53.7 ± 8.8 years; BMI 35.3 ± 4.2 kg/m2) and an estimated glomerular filtration rate (eGFR) of at least 60 mL/min/1.73 m2 (evaluated using the CKD-EPI equation). Anthropometric (weight, BMI, and waist circumference) and biochemical parameters (fasting plasma glucose, insulin, cholesterol profile, triglycerides, AST, ALT, and urea) were collected at baseline and after 45 (±2) days of Phase 1 of VLEKT. Results: At baseline, 54.8% of participants had an eGFR <90 mL/min/1.73 m2, while 45.2% had an eGFR ≥ 90 mL/min/1.73 m2, with no significant differences in sex distribution. After 45 (±2) days of Phase 1 of VLEKT, both groups showed significant reductions in BMI (p < 0.001), waist circumference (p < 0.001), fasting plasma glucose (p ≤ 0.004), insulin (p < 0.001), HOMA-IR (p < 0.001), total cholesterol (p < 0.001), LDL cholesterol (p < 0.001), LDL/HDL ratio (p ≤ 0.002), triglycerides (p ≤ 0.009), AST (p ≤ 0.034), and ALT (p ≤ 0.009). Notably, the eGFR significantly increased in participants with an eGFR < 90 mL/min/1.73 m2 (p < 0.001), while no changes were observed in those with an eGFR ≥ 90 mL/min/1.73 m2. Conclusions: Phase 1 of VLEKT could effectively promote weight loss and metabolic improvements without compromising renal function, even in individuals with obesity and mild renal impairment. Further research is warranted to confirm the efficacy and safety of VLEKT and to assess outcomes across all protocol phases.
Collapse
Affiliation(s)
- Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
| | - Luigi Barrea
- Dipartimento di Psicologia e Scienze Della Salute, Università Telematica Pegaso, Centro Direzionale Isola F2, Via Porzio, 80143 Naples, Italy
| | - Martina Galasso
- Dipartimento di Medicina Clinica e Chirurgia, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Stefania Lucà
- Distretto Sanitario 67, ASL Salerno, 84085 Salerno, Italy
| | - Elisabetta Camajani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonio Pisani
- Unit of Nephrology, Federico II University of Naples, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Giovanna Muscogiuri
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA
- Dipartimento di Medicina Clinica e Chirurgia, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Marečáková N, Kačírová J, Tóthová C, Maďari A, Maďar M, Kuricová M, Horňák S. Serum and Urinary Uromodulin in Dogs with Early Chronic Kidney Disease vs. Healthy Canine Population. Animals (Basel) 2024; 14:2099. [PMID: 39061561 PMCID: PMC11273724 DOI: 10.3390/ani14142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Serum and urinary uromodulin are evaluated as potential biomarkers of kidney disease. The aim of our research was to select a more appropriate form of uromodulin for the diagnosis of early stages of chronic kidney disease (CKD). We also focused on the influence of age and gender in one breed on uromodulin and on the possible interbreed differences. Serum uromodulin had the lowest values in dogs younger than 2 years but no effect of gender, breed, or CKD was observed. Urinary uromodulin indexed to urinary creatinine was significantly reduced in dogs in stage 2 of CKD (p = 0.003) in contrast to uromodulin converted to urine specific gravity. Urinary uromodulin with both corrections was significantly lower in Belgian shepherds compared to German shepherds (p < 0.0001, p = 0.0054) but was not influenced by gender or age. In stage 1 of CKD, urinary uromodulin correlated with kidney disease markers SDMA (p = 0.0424, p = 0.0214) and UPC (p = 0.0050, p = 0.0024). Urinary uromodulin appears to be more associated with CKD than serum uromodulin. Further studies with a larger number of patients are needed for the suitability of urinary uromodulin as a marker of early-stage disease.
Collapse
Affiliation(s)
- Nikola Marečáková
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (N.M.); (M.K.); (S.H.)
| | - Jana Kačírová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 949 01 Nitra, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Aladár Maďari
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (N.M.); (M.K.); (S.H.)
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Mária Kuricová
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (N.M.); (M.K.); (S.H.)
| | - Slavomír Horňák
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (N.M.); (M.K.); (S.H.)
| |
Collapse
|
7
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
8
|
Ali MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol 2024; 36:100341. [PMID: 38616864 PMCID: PMC11015524 DOI: 10.1016/j.jcte.2024.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.
Collapse
Affiliation(s)
- Mariam M. Ali
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Sanober Parveen
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Vanessa Williams
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Robert Dons
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Gabriel I. Uwaifo
- Section of Endocrinology, Dept of Medicine, SIU School of Medicine, 751 N Rutledge St, Moy Building, Suite 1700, Room #1813, Springfield, Il 62702, United States
| |
Collapse
|
9
|
Zeng J, Zhang T, Yang Y, Wang J, Zheng D, Hou Y, Tong Y, Fan X, Wang X, Fang Y. Association between a metabolic score for insulin resistance and hypertension: results from National Health and Nutrition Examination Survey 2007-2016 analyses. Front Endocrinol (Lausanne) 2024; 15:1369600. [PMID: 38711979 PMCID: PMC11070536 DOI: 10.3389/fendo.2024.1369600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Background The Metabolic Score for Insulin Resistance (METS-IR) offers a promising and reliable non-insulin-based approach to assess insulin resistance and evaluate cardiometabolic risk. However, evidence for the association between METS-IR and hypertension was still limited. Methods Participants from the National Health and Nutrition Examination Survey (NHANES) database from 2007-2016 were selected for weighted multivariable regression analyses, subgroup analyses and restricted cubic spline (RCS) modeling to assess the association between the METS-IR and hypertension, as well as systolic blood pressure (SBP) and diastolic blood pressure (DBP). Results This study enrolled 7,721 adults aged ≥20 years, 2,926 (34.03%) of whom was diagnosed as hypertension. After adjusting for all potential covariates, an increased METS-IR (log2 conversion, denoted as log2METS-IR) was independently associated with a higher prevalence of hypertension (odd ratio [OR] 3.99, 95% confidence interval [CI] 3.19~5.01). The OR for hypertension in subjects with the highest quartile of METS-IR was 3.89-fold (OR 3.89, 95% CI 3.06~4.94) higher than that in those with the lowest quartile of METS-IR. This positive correlation became more significant as METS-IR increased (p for trend < 0.001). Log2METS-IR was significantly correlated with increase in SBP (β 6.75, 95% CI 5.65~7.85) and DBP (β 5.59, 95% CI 4.75~6.43) in a fully adjusted model. Consistent results were obtained in subgroup analyses. Hypertension, SBP and DBP all exhibited a non-linear increase with the rise in METS-IR. The minimal threshold for the beneficial association of METS-IR with hypertension, SBP and DBP were all identified to be 46.88. Conclusion The findings of this study revealed a significant positive association between METS-IR and hypertension among US adults, suggesting METS-IR as a potential tool for assessing hypertension risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuan Wang
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Gonzalez AA, Visniauskas B, Reverte V, Sure VN, Vallotton Z, Torres BS, Acosta MA, Zemedkun M, Katakam PV, Prieto MC. Urinary Angiotensinogen Displays Sexual Dimorphism in Non-Diabetic Humans and Mice with Overweight. Int J Mol Sci 2024; 25:635. [PMID: 38203807 PMCID: PMC10779427 DOI: 10.3390/ijms25010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Increased body weight (BW) induces inappropriate renin-angiotensin system (RAS) activation. The activation of the intrarenal RAS is associated with increased urinary angiotensinogen (uAGT), blood pressure (BP), and kidney damage. Here, we examined uAGT excretion levels in young non-diabetic human subjects with overweight (OW) and non-diabetic mice with high-fat diet (HFD)-induced OW. Human subjects (women and men; 20-28 years old) included two groups: (a) overweight (OW, n = 17, BMI ≥ 25); and (b) controls (normal weight (NW; n = 26, BMI ≤ 25). In these subjects, we measured BP, albuminuria, and protein levels of uAGT by ELISA adjusted by urinary creatinine (expressed by uAGT/uCrea). Mice (female and male C57BL/6J mice, 8 ± 2 weeks of age) also included two groups: HFD or normal fat diet (NFD) fed for 8 weeks. We measured BW, fasting blood glucose (FBG), BP by telemetry, albuminuria, and uAGT by ELISA. In humans: (i) no significant changes were observed in BP, albuminuria, and FBG when comparing NW and OW subjects; (ii) multivariate logistic regression analysis of independent predictors related to uAGT/uCrea levels demonstrated a strong association between uAGT and overweight; (iii) urinary reactive oxygen species (ROS) were augmented in men and women with OW; (iv) the uAGT/uCrea ratio was higher in men with OW. However, the uAGT/uCrea values were lower in women even with OW. In mice: (i) males fed an HFD for 8 weeks became OW while females did not; (ii) no changes were observed either in FBG, BP, or albuminuria; (iii) kidney ROS were augmented in OW male mice after 28 weeks but not in females; (iv) OW male mice showed augmented excretion of uAGT but this was undetectable in females fed either NFD or HFD. In humans and mice who are OW, the urinary excretion of AGT differs between males and females and overcomes overt albuminuria.
Collapse
Affiliation(s)
- Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Bruna Visniauskas
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Virginia Reverte
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ventaka N. Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zoe Vallotton
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Bryan S. Torres
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Marco A. Acosta
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mahlet Zemedkun
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Minolfa C. Prieto
- Department of Physiology and Hypertension Core, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Basolo A, Salvetti G, Giannese D, Genzano SB, Ceccarini G, Giannini R, Sotgia G, Fierabracci P, Piaggi P, Santini F. Obesity, Hyperfiltration, and Early Kidney Damage: A New Formula for the Estimation of Creatinine Clearance. J Clin Endocrinol Metab 2023; 108:3280-3286. [PMID: 37296533 PMCID: PMC10655541 DOI: 10.1210/clinem/dgad330] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Glomerular hyperfiltration may represent a direct pathogenetic link between obesity and kidney disease. The most widely used methods to estimate creatine clearance such as Cockroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) have not been validated in subjects with obesity. OBJECTIVE The performance of prediction formulas was compared with measured creatinine clearance (mCrCl) in subjects with obesity. METHODS The study population included 342 patients with obesity (mean BMI 47.6 kg/m2) without primary kidney disease. A urine collection was performed over 24 hours for measurement of CrCl. RESULTS mCrCl increased with body weight. The CG formula showed an overestimation at high CrCl, whereas an underestimation resulted from CKD-EPI and MDRD. To improve the accuracy of estimated CrCl (eCrCl), a new CG-based formula was developed:53+0.7×(140-Age)×Weight/(96xSCr)×(0.85iffemale)A cut-off point for BMI of 32 kg/m2 was identified, at which the new formula may be applied to improve eCrCl. CONCLUSION In patients with obesity the glomerular filtration rate increases with body weight, and it is associated with the presence of albuminuria, suggesting an early kidney injury. We propose a novel formula that improves the accuracy of eCrCl to avoid missed diagnoses of hyperfiltration in patients with obesity.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Guido Salvetti
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Domenico Giannese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56124, Italy
| | - Susanna Bechi Genzano
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa 56124, Italy
| | - Gianluca Sotgia
- Consorzio Metis, University Hospital of Pisa, Pisa 56124, Italy
| | - Paola Fierabracci
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56100, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| |
Collapse
|
12
|
Permyakova A, Rothner A, Knapp S, Nemirovski A, Ben-Zvi D, Tam J. Renal Endocannabinoid Dysregulation in Obesity-Induced Chronic Kidney Disease in Humans. Int J Mol Sci 2023; 24:13636. [PMID: 37686443 PMCID: PMC10487429 DOI: 10.3390/ijms241713636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The endocannabinoid system (ECS) regulates various physiological processes, including energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown. In this study, a total of 21 lean and obese males (38-71 years) underwent a kidney biopsy. Biochemical analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and blood samples. Correlations between different parameters were evaluated using a comprehensive matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study investigates obesity's impact on renal eCB "tone" in humans, providing insights into the ECS's role in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among obesity, the ECS, and kidney function.
Collapse
Affiliation(s)
- Anna Permyakova
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Ariel Rothner
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Sarah Knapp
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah Medical School–The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.K.); (D.B.-Z.)
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hadassah Medical School–The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.K.); (D.B.-Z.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.P.); (A.R.); (A.N.)
| |
Collapse
|
13
|
Yang Y, Yu J, Huo J, Yang L, Yan Y. Protective effects of peanut skin extract on high-fat and high-fructose diet-induced kidney injury in rats. Food Sci Biotechnol 2023; 32:1091-1099. [PMID: 37215259 PMCID: PMC10195960 DOI: 10.1007/s10068-023-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic kidney disease (CKD) is becoming a major public health problem worldwide. This study aimed to explore whether peanut skin extract (PSE) has protective effects against high-fat and high-fructose (HF) diet-induced kidney injury. Rats were fed HF diet in the whole experiment, while rats in PSE-treated groups were supplemented with PSE. Finally, PSE reduced kidney tissue weight, perinephric fat weight, and levels of serum ammonia, creatinine, and urea nitrogen, along with decreases of renal IL-1β and TNF-α level. Histological examination indicated that PSE alleviated renal tubular dilatation, and degeneration and partial exfoliation of renal tubular epithelial cells. In addition, PSE decreased serum and urinary uric acid level, together with reductions of XOD production and XOD activity both in serum and liver, and down-regulated expressions of renal NLRP3 and ERS proteins. Thus, PSE may be a potential functional food for protecting against renal injury in high energy intake.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Jiaoyao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
14
|
Kearney J, Gnudi L. The Pillars for Renal Disease Treatment in Patients with Type 2 Diabetes. Pharmaceutics 2023; 15:pharmaceutics15051343. [PMID: 37242585 DOI: 10.3390/pharmaceutics15051343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The diabetes epidemic and the increasing number of patients with diabetic chronic vascular complications poses a significant challenge to health care providers. Diabetic kidney disease is a serious diabetes-mediated chronic vascular complication and represents a significant burden for both patients and society in general. Diabetic kidney disease not only represents the major cause of end stage renal disease but is also paralleled by an increase in cardiovascular morbidity and mortality. Any interventions to delay the development and progression of diabetic kidney disease are important to reduce the associated cardiovascular burden. In this review we will discuss five therapeutic tools for the prevention and treatment of diabetic kidney disease: drugs inhibiting the renin-angiotensin-aldosterone system, statins, the more recently recognized sodium-glucose co-transporter-2 inhibitors, glucagon-like peptide 1 agonists, and a novel non-steroidal selective mineralocorticoid receptor antagonist.
Collapse
Affiliation(s)
- Jessica Kearney
- Department of Diabetes and Endocrinology, Guy's and St Thomas NHS Foundation Trust, London SE1 9RT, UK
| | - Luigi Gnudi
- Department of Diabetes and Endocrinology, Guy's and St Thomas NHS Foundation Trust, London SE1 9RT, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, London WC2R 2LS, UK
| |
Collapse
|
15
|
Fraeyman N, De Bacquer D, Fiers T, Godderis L, Verhaeghe R, Eeckloo K, Gemmel P, Viaene L, Mortier E. Body mass index and occupational accidents among health care workers in a large university hospital. Acta Clin Belg 2023; 78:128-134. [PMID: 35703157 DOI: 10.1080/17843286.2022.2084936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Obesity is associated with a number of chronic diseases such as cardiovascular diseases and cancers. The association of obesity with occupational accidents has been suggested although the evidence is less convincing. The objective of the study is to analyse the relationship between BMI values and ergonomic accidents in a large University Hospital. METHODS The relationship between body mass index (BMI) and the incidence of ergonomic occupational accidents over a period of 8 years was investigated in a cohort of employees of a large University Hospital, covering almost 27,000 person-years of observation. This relationship was stratified according to the variables age, gender, functional status within the organization and work schedule (part-time or full time). Height and weight were objectively measured, demographic data were obtained from the human resource department and the registration of ergonomic accidents was carried out by the safety and prevention department of the hospital. RESULTS The number of ergonomic accidents, expressed as number/1000 person-years was higher for female employees compared to male employees, increased with age and markedly increased from functional class A (leading or expert function and higher educational level) to D (executive function in patient care and technical department). However, the incidence of ergonomic accidents accompanied by loss of working time was not significantly associated with BMI, independently of age and gender. In addition, the type of accident and the severity of the accidents expressed as the number of days absent from work were unrelated to BMI. CONCLUSION No independent relationship between BMI and the incidence of ergonomic accidents could be identified in our cohort. Tailoring working conditions to individual BMI levels is not recommended.
Collapse
Affiliation(s)
- N Fraeyman
- Environmental Department [Milieudienst], University Hospital, Gent University, Gent, Belgium.,Central Administration, Secretariat of the Board of Governors, Faculty of Medicine and Health Sciences, University Hospital, Gent University, Gent, Belgium
| | - D De Bacquer
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Gent University, Gent University Hospital, Gent, Belgium
| | - T Fiers
- Clinical Chemistry Laboratory, Gent University Hospital, Gent University, Gent, Belgium
| | - L Godderis
- Department of Public Health and Primary Care, Faculty of Medicine, Leuven University, University Hospital Leuven, Gasthuisberg Campus, Leuven, Belgium
| | - R Verhaeghe
- Central Administration, Secretariat of the Board of Governors, Faculty of Medicine and Health Sciences, University Hospital, Gent University, Gent, Belgium
| | - K Eeckloo
- Central Administration, Secretariat of the Board of Governors, Faculty of Medicine and Health Sciences, University Hospital, Gent University, Gent, Belgium
| | - P Gemmel
- University Ghent, Faculty of Economics and Business Administration, Gent, Belgium
| | - L Viaene
- Safety Department [Preventiedienst], University Hospital, Gent University, Gent, Belgium
| | - E Mortier
- Central Administration, Secretariat of the Board of Governors, Faculty of Medicine and Health Sciences, University Hospital, Gent University, Gent, Belgium
| |
Collapse
|
16
|
Gnudi L. Renal disease in patients with type 2 diabetes: Magnitude of the problem, risk factors and preventive strategies. Presse Med 2023; 52:104159. [PMID: 36565753 DOI: 10.1016/j.lpm.2022.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luigi Gnudi
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
17
|
Punica granatum L. Polyphenolic Extract as an Antioxidant to Prevent Kidney Injury in Metabolic Syndrome Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6144967. [PMID: 36644578 PMCID: PMC9836814 DOI: 10.1155/2023/6144967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
Introduction Obesity and metabolic syndrome (MetS) constitute a rapidly increasing health problem and contribute to the development of multiple comorbidities like acute and chronic kidney disease. Insulin resistance, inappropriate lipolysis, and excess of free fatty acids (FFAs) are associated with glomerulus hyperfiltration and atherosclerosis. The important component of MetS, oxidative stress, is also involved in the destabilization of kidney function and the progression of kidney injury. Natural polyphenols have the ability to reduce the harmful effect of reactive oxygen and nitrogen species (ROS/RNS). Extract derived from Punica granatum L. is rich in punicalagin that demonstrates positive effects in MetS and its associated diseases. The aim of the study was to investigate the effect of bioactive substances of pomegranate peel to kidney damage associated with the MetS. Methods In this study, we compared biomarkers of oxidative stress in kidney tissue of adult male Zucker Diabetic Fatty (ZDF) rats with MetS and healthy controls that were treated with Punica granatum L. extract at a dose of 100 or 200 mg/kg. Additionally, we evaluated the effect of polyphenolic extract on kidney injury markers and remodeling. The concentration of ROS/RNS, oxLDL, glutathione (GSH), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), metalloproteinase 2 and 9 (MMP-2, MMP-9), and the activity of superoxide dismutase (SOD) and catalase (CAT) were measured. Results The data showed significant differences in oxidative stress markers between treated and untreated MetS rats. ROS/RNS levels, oxLDL concentration, and SOD activity were lower, whereas CAT activity was higher in rats with MetS receiving polyphenolic extract. After administration of the extract, markers for kidney injury (NGAL, KIM-1) decreased. Conclusion Our study confirmed the usefulness of pomegranate polyphenols in the treatment of MetS and the prevention of kidney damage. However, further, more detailed research is required to establish the mechanism of polyphenol protection.
Collapse
|
18
|
Prasad R, Jha RK, Keerti A. Chronic Kidney Disease: Its Relationship With Obesity. Cureus 2022; 14:e30535. [DOI: 10.7759/cureus.30535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
|
19
|
Earle A, Bessonny M, Benito J, Huang K, Parker H, Tyler E, Crawford B, Khan N, Armstrong B, Stamatikos A, Garimella S, Clay-Gilmour A. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J Clin Med 2022; 11:5271. [PMID: 36142918 PMCID: PMC9502686 DOI: 10.3390/jcm11185271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The early detection of chronic kidney disease (CKD) is key to reducing the burden of disease and rising costs of care. This need has spurred interest in finding new biomarkers for CKD. Ideal bi-omarkers for CKD should be: easy to measure; stable; reliably detected, even when interfering substances are present; site-specific based on the type of injury (tubules vs. glomeruli); and its changes in concentration should correlate with disease risk or outcome. Currently, no single can-didate biomarker fulfills these criteria effectively, and the mechanisms underlying kidney fibrosis are not fully understood; however, there is growing evidence in support of microRNA-mediated pro-cesses. Specifically, urinary exosomal microRNAs may serve as biomarkers for kidney fibrosis. In-creasing incidences of obesity and the recognition of obesity-associated CKD have increased interest in the interplay of obesity and CKD. In this review, we provide: (1) an overview of the current scope of CKD biomarkers within obese individuals to elucidate the genetic pathways unique to obesi-ty-related CKD; (2) a review of microRNA expression in obese individuals with kidney fibrosis in the presence of comorbidities, such as diabetes mellitus and hypertension; (3) a review of thera-peutic processes, such as diet and exercise, that may influence miR-expression in obesity-associated CKD; (4) a review of the technical aspects of urinary exosome isolation; and (5) future areas of research.
Collapse
Affiliation(s)
- Angel Earle
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Madison Bessonny
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Josh Benito
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hannah Parker
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Tyler
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Crawford
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nabeeha Khan
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Bridget Armstrong
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sudha Garimella
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
20
|
Nawaz S, Chinnadurai R, Al Chalabi S, Evans P, Kalra PA, Syed AA, Sinha S. Obesity and Chronic Kidney Disease A Current Review. Obes Sci Pract 2022; 9:61-74. [PMID: 37034567 PMCID: PMC10073820 DOI: 10.1002/osp4.629] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Background Obesity poses significant challenges to healthcare globally, particularly through its bi-directional relationship with co-morbid metabolic conditions such as type 2 diabetes and hypertension. There is also emerging evidence of an association between obesity and chronic kidney disease (CKD) which is less well characterized. Methods A literature search of electronic libraries was conducted to identify and present a narrative review of the interplay between obesity and CKD. Findings Obesity may predispose to CKD directly as it is linked to the histopathological finding of obesity-related glomerulopathy and indirectly through its widely recognized complications such as atherosclerosis, hypertension, and type 2 diabetes. The biochemical and endocrine products of adipose tissue contribute to pathophysiological processes such as inflammation, oxidative stress, endothelial dysfunction, and proteinuria. The prevention and management of obesity may prove critical in counteracting both the development and advancement of CKD. Moreover, measures of abdominal adiposity such as waist circumference, are generally associated with worse morbidity and mortality in individuals receiving maintenance hemodialysis. Conclusion Obesity is a risk factor for the onset and progression of CKD and should be recognized as a potential target for a preventative public health approach to reduce CKD rates within the general population. Future research should focus on the use of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors in patients with CKD and obesity due to their multi-faceted actions on major outcomes.
Collapse
Affiliation(s)
- Saira Nawaz
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
| | - Rajkumar Chinnadurai
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Saif Al Chalabi
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Philip Evans
- Department of Renal Medicine Liverpool University Hospitals NHS Foundation Trust Liverpool UK
| | - Philip A Kalra
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Akheel A. Syed
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Diabetes Endocrinology and Obesity Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| | - Smeeta Sinha
- Faculty of Biology Medicine and Health University of Manchester Manchester UK
- Department of Renal Medicine Salford Royal Hospital Northern Care Alliance NHS Foundation Trust Salford UK
| |
Collapse
|
21
|
Copperi F, Kim JD, Diano S. Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biol Psychiatry 2022; 91:879-887. [PMID: 34344535 PMCID: PMC8643363 DOI: 10.1016/j.biopsych.2021.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/02/2022]
Abstract
Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
22
|
Steele C, Nowak K. Obesity, Weight Loss, Lifestyle Interventions, and Autosomal Dominant Polycystic Kidney Disease. KIDNEY AND DIALYSIS 2022; 2:106-122. [PMID: 35350649 PMCID: PMC8959086 DOI: 10.3390/kidneydial2010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Obesity remains a growing public health concern in industrialized countries around the world. The prevalence of obesity has also continued to rise in those with chronic kidney disease. Epidemiological data suggests those with overweight and obesity, measured by body mass index, have an increased risk for rapid kidney disease progression. Autosomal dominant polycystic kidney disease causes growth and proliferation of kidney cysts resulting in a reduction in kidney function in the majority of adults. An accumulation of adipose tissue may further exacerbate the metabolic defects that have been associated with ADPKD by affecting various cell signaling pathways. Lifestyle interventions inducing weight loss might help delay disease progression by reducing adipose tissue and systematic inflammation. Further research is needed to determine the mechanistic influence of adipose tissue on disease progression.
Collapse
Affiliation(s)
- Cortney Steele
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Kristen Nowak
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Lin X, Chen Z, Huang H, Zhong J, Xu L. Diabetic kidney disease progression is associated with decreased lower-limb muscle mass and increased visceral fat area in T2DM patients. Front Endocrinol (Lausanne) 2022; 13:1002118. [PMID: 36277706 PMCID: PMC9582837 DOI: 10.3389/fendo.2022.1002118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
AIM This study aimed to explore the relationship between lower-limb muscle mass/visceral fat area and diabetic kidney disease (DKD) progression in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 879 participants with T2DM were divided into 4 groups according to the prognosis of CKD classification from Kidney Disease: Improving Global Outcomes (KDIGO). Rectus femoris cross-sectional area (RFCSA) was measured through ultrasound, and visceral fat area (VFA) was evaluated with bioelectric impedance analysis (BIA). RESULTS T2DM patients with high to very high prognostic risk of DKD showed a reduced RFCSA (male P < 0.001; female P < 0.05), and an enlarged VFA (male P < 0.05; female P < 0.05). The prognostic risk of DKD was negatively correlated with RFCSA (P < 0.05), but positively correlated with VFA (P < 0.05). Receiver-operating characteristic analysis revealed that the cutoff points of T2DM duration combined with RFCSA and VFA were as follows: (male: 7 years, 6.60 cm2, and 111 cm2; AUC = 0.82; 95% CI: 0.78-0.88; sensitivity, 78.0%; specificity, 68.6%, P < 0.001) (female: 9 years, 5.05 cm2, and 91 cm2; AUC = 0.73; 95% CI: 0.66-0.81; sensitivity, 73.9%; specificity, 63.3%, P < 0.001). CONCLUSION A significant association was demonstrated between reduced RFCSA/increased VFA and high- to very high-prognostic risk of DKD. T2DM duration, RFCSA, and VFA may be valuable markers of DKD progression in patients with T2DM. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn, identifier ChiCTR2100042214.
Collapse
Affiliation(s)
- Xiaopu Lin
- Department of Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haishan Huang
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingyi Zhong
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingling Xu
- Department of Endocrinology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Lingling Xu,
| |
Collapse
|
24
|
Brown AK, Nichols A, Coley CA, Ekperikpe US, McPherson KC, Shields CA, Poudel B, Cornelius DC, Williams JM. Treatment With Lisinopril Prevents the Early Progression of Glomerular Injury in Obese Dahl Salt-Sensitive Rats Independent of Lowering Arterial Pressure. Front Physiol 2021; 12:765305. [PMID: 34975523 PMCID: PMC8719629 DOI: 10.3389/fphys.2021.765305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently, we reported that obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats develop glomerular injury and progressive proteinuria prior to puberty. Moreover, this early progression of proteinuria was associated with elevations in GFR. Therefore, the current study examined whether treatment with lisinopril to reduce GFR slows the early progression of proteinuria in SSLepRmutant rats prior to puberty. Experiments were performed on 4-week-old SS and SSLepRmutant rats that were either treated with vehicle or lisinopril (20 mg/kg/day, drinking water) for 4 weeks. We did not observe any differences in MAP between SS and SSLepRmutant rats treated with vehicle (148 ± 5 vs. 163 ± 6 mmHg, respectively). Interestingly, chronic treatment with lisinopril markedly reduced MAP in SS rats (111 ± 3 mmHg) but had no effect on MAP in SSLepRmutant rats (155 ± 4 mmHg). Treatment with lisinopril significantly reduced proteinuria in SS and SSLepRmutant rats compared to their vehicle counterparts (19 ± 5 and 258 ± 34 vs. 71 ± 12 and 498 ± 66 mg/day, respectively). Additionally, nephrin excretion was significantly elevated in SSLepRmutant rats versus SS rats, and lisinopril reduced nephrin excretion in both strains. GFR was significantly elevated in SSLepRmutant rats compared to SS rats, and lisinopril treatment reduced GFR in SSLepRmutant rats by 30%. The kidneys from SSLepRmutant rats displayed glomerular injury with increased mesangial expansion and renal inflammation versus SS rats. Chronic treatment with lisinopril significantly decreased glomerular injury and renal inflammation in the SSLepRmutant rats. Overall, these data indicate that inhibiting renal hyperfiltration associated with obesity is beneficial in slowing the early development of glomerular injury and renal inflammation.
Collapse
Affiliation(s)
- Andrea K. Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Chantell A. Coley
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ubong S. Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kasi C. McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Corbin A. Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C. Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jan M. Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
25
|
Shih CC, Chen SH, Chen GD, Chang CC, Shih YL. Development of a Longitudinal Diagnosis and Prognosis in Patients with Chronic Kidney Disease: Intelligent Clinical Decision-Making Scheme. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312807. [PMID: 34886533 PMCID: PMC8657318 DOI: 10.3390/ijerph182312807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023]
Abstract
Previous studies on CKD patients have mostly been retrospective, cross-sectional studies. Few studies have assessed the longitudinal assessment of patients over an extended period. In consideration of the heterogeneity of CKD progression. It’s critical to develop a longitudinal diagnosis and prognosis for CKD patients. We proposed an auto Machine Learning (ML) scheme in this study. It consists of four main parts: classification pipeline, cross-validation (CV), Taguchi method and improve strategies. This study includes datasets from 50,174 patients, data were collected from 32 chain clinics and three special physical examination centers, between 2015 and 2019. The proposed auto-ML scheme can auto-select the level of each strategy to associate with a classifier which finally shows an acceptable testing accuracy of 86.17%, balanced accuracy of 84.08%, sensitivity of 90.90% and specificity of 77.26%, precision of 88.27%, and F1 score of 89.57%. In addition, the experimental results showed that age, creatinine, high blood pressure, smoking are important risk factors, and has been proven in previous studies. Our auto-ML scheme light on the possibility of evaluation for the effectiveness of one or a combination of those risk factors. This methodology may provide essential information and longitudinal change for personalized treatment in the future.
Collapse
Affiliation(s)
- Chin-Chuan Shih
- Dean of the Lian-An Clinic, Taipei 24200, Taiwan;
- Deputy Chairman, Taiwan Association of Family Medicine, Taipei 24200, Taiwan
| | - Ssu-Han Chen
- Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
- Center for Artificial Intelligence & Data Science, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Gin-Den Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chi-Chang Chang
- Department of Medical Informatics, Chung Shan Medical University & IT Office, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Information Management, Ming Chuan University, Taoyuan 33300, Taiwan
- Correspondence: ; Tel.: +886-4-24730022
| | - Yu-Lin Shih
- Department of Otolaryngology-Head and Neck Surgery, Chang-Gung Memorial Hospital, Linkou Branch, Taoyuan City 33305, Taiwan;
| |
Collapse
|
26
|
Fotheringham AK, Solon-Biet SM, Bielefeldt-Ohmann H, McCarthy DA, McMahon AC, Ruohonen K, Li I, Sullivan MA, Whiddett RO, Borg DJ, Cogger VC, Ballard WO, Turner N, Melvin RG, Raubenheimer D, Le Couteur DG, Simpson SJ, Forbes JM. Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. iScience 2021; 24:103308. [PMID: 34820603 PMCID: PMC8602032 DOI: 10.1016/j.isci.2021.103308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys balance many byproducts of the metabolism of dietary components. Previous studies examining dietary effects on kidney health are generally of short duration and manipulate a single macronutrient. Here, kidney function and structure were examined in C57BL/6J mice randomized to consume one of a spectrum of macronutrient combinations (protein [5%–60%], carbohydrate [20%–75%], and fat [20%–75%]) from weaning to late-middle age (15 months). Individual and interactive impacts of macronutrients on kidney health were modeled. Dietary protein had the greatest influence on kidney function, where chronic low protein intake decreased glomerular filtration rates and kidney mass, whereas it increased kidney immune infiltration and structural injury. Kidney outcomes did not align with cardiometabolic risk factors including glucose intolerance, overweight/obesity, dyslipidemia, and hypertension in mice with chronic low protein consumption. This study highlights that protein intake over a lifespan is an important determinant of kidney function independent of cardiometabolic changes. Chronic high macronutrient intake from any source increases kidney function (GFR) Low protein intake led to greater kidney tubular structural injury and inflammation Lower protein intake decreased kidney mass and glomerular filtration capacity Kidney outcomes did not align with longevity or cardiometabolic outcomes
Collapse
Affiliation(s)
- Amelia K Fotheringham
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney 2006, NSW, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton Campus, Gatton 4343, QLD, Australia.,School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane 4067, QLD, Australia
| | - Domenica A McCarthy
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Aisling C McMahon
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Kari Ruohonen
- Animal Nutrition and Health, Cargill, Sandnes, Norway
| | - Isaac Li
- Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Rani O Whiddett
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia
| | - Danielle J Borg
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW 2052, Australia
| | - Richard G Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth 55812, MN, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,Centre for Education and Research on Aging, and Aging and Alzheimer's Institute, Concord Hospital, Sydney 2139, NSW, Australia.,ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney 2139, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, NSW, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications Group, Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane 4072, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane 4067, QLD, Australia.,Department of Medicine, University of Melbourne, Heidelberg, VIC 3084, Australia
| |
Collapse
|
27
|
Yu A, Zhao J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Changes in the Expression of Renal Brush Border Membrane N-Glycome in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1677. [PMID: 34827675 PMCID: PMC8616023 DOI: 10.3390/biom11111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| | - Shiv Pratap S. Yadav
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Texas City, TX 79409, USA; (A.Y.); (J.Z.)
| |
Collapse
|
28
|
Yu A, Zhao J, Zhong J, Wang J, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Altered O-glycomes of Renal Brush-Border Membrane in Model Rats with Chronic Kidney Diseases. Biomolecules 2021; 11:1560. [PMID: 34827558 PMCID: PMC8615448 DOI: 10.3390/biom11111560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| | - Shiv Pratap S. Yadav
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Bruce A. Molitoris
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Mark C. Wagner
- Department of Medicine, Nephrology Division, Indiana University, Indianapolis, IN 46202, USA; (S.P.S.Y.); (B.A.M.); (M.C.W.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (A.Y.); (J.Z.); (J.Z.); (J.W.)
| |
Collapse
|
29
|
Hata J, Matsuoka Y, Onagi A, Honda-Takinami R, Matsuoka K, Sato Y, Akaihata H, Ogawa S, Kataoka M, Hosoi T, Kojima Y. Usefulness of the mayo adhesive probability score as a predictive factor for renal function deterioration after partial nephrectomy: a retrospective case-control study. Int Urol Nephrol 2021; 53:2281-2288. [PMID: 34510283 DOI: 10.1007/s11255-021-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Whether the Mayo adhesive probability score, an index of the perinephric fat environment, could be a predictive factor for renal function deterioration after partial nephrectomy was investigated. METHODS A retrospective case-control study of 78 patients who underwent laparoscopic partial nephrectomy was performed. An estimated glomerular filtration rate preservation rate at ≤ 90% at 3 months after surgery was defined as postoperative renal function deterioration. These patients were divided into two groups (non-deterioration and deterioration groups). Patient factors including Mayo adhesive probability scores (both tumor and unaffected sides) and surgical factors were evaluated to identify the predictors for postoperative renal function deterioration. The statistical analysis used univariate and multivariate logistic regression analyses. RESULTS Thirty-seven (47.4%) patients had postoperative renal function deterioration after partial nephrectomy. Univariate analysis identified Mayo adhesive probability score on the unaffected side (p = 0.02), and warm ischemia time (p < 0.01) as predictors of postoperative renal function deterioration. On multivariate analyses, Mayo adhesive probability score on the unaffected side (odds ratio: 1.38 [1.05-1.79], p = 0.02) and warm ischemia time (odds ratio: 1.04 [1.01-1.07], p < 0.01) were significantly associated with postoperative renal function deterioration as same as univariate analysis. On receive operating characteristic curve analysis, Mayo adhesive probability score on the unaffected side (cutoff value 1.5; p = 0.02) and warm ischemia time (cutoff value 26.5 min; p = 0.01) were significant predictors of renal function deterioration 3 month after surgery. CONCLUSION The Mayo adhesive probability score on the unaffected side and warm ischemia time are useful predictors for renal function deterioration after partial nephrectomy. TRIAL REGISTRATION NUMBER 2019-249, January 21st, 2019, retrospectively registered.
Collapse
Affiliation(s)
- Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Yuta Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Akifumi Onagi
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Ruriko Honda-Takinami
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kanako Matsuoka
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yuichi Sato
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Masao Kataoka
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takayuki Hosoi
- Department of Urology, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
30
|
Adair KE, Bowden RG, Funderburk LK, Forsse JS, Ylitalo KR. Metabolic Health, Obesity, and Renal Function: 2013-2018 National Health and Nutrition Examination Surveys. Life (Basel) 2021; 11:888. [PMID: 34575037 PMCID: PMC8470801 DOI: 10.3390/life11090888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Rising rates of metabolic syndrome, obesity, and mortality from chronic kidney disease (CKD) have prompted further investigation into the association between metabolic phenotypes and CKD. Purpose: To report the frequency of strictly defined metabolic phenotypes, renal function within each phenotype, and individual risk factors associated with reduced renal function. We utilized the 2013-2018 National Health and Nutrition Examination Surveys (NHANES) and complex survey sample weighting techniques to represent 220 million non-institutionalized U.S. civilians. Metabolic health was defined as having zero of the risk factors defined by the National Cholesterol Education Program with the exception of obesity, which was defined as BMI ≥ 30 kg/m2 in non-Asians and BMI ≥ 25 kg/m2 in Asians. The metabolically healthy normal (MUN) phenotype comprised the highest proportion of the population (38.40%), whereas the metabolically healthy obese (MHO) was the smallest (5.59%). Compared to the MHN reference group, renal function was lowest in the strictly defined MUN (B = -9.60, p < 0.001) and highest in the MHO (B = 2.50, p > 0.05), and this persisted when an increased number of risk factors were used to define metabolic syndrome. Systolic blood pressure had the strongest correlation with overall eGFR (r = -0.25, p < 0.001), and individuals with low HDL had higher renal function compared to the overall sample. The MUN phenotype had the greatest association with poor renal function. While the MHO had higher renal function, this may be due to a transient state caused by renal hyperfiltration. Further research should be done to investigate the association between dyslipidemia and CKD.
Collapse
Affiliation(s)
- Kathleen E Adair
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97313, Waco, TX 76798, USA
| | - Rodney G Bowden
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97343, Waco, TX 76798, USA
| | - LesLee K Funderburk
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97313, Waco, TX 76798, USA
| | - Jeffrey S Forsse
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97313, Waco, TX 76798, USA
| | - Kelly R Ylitalo
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, One Bear Place #97343, Waco, TX 76798, USA
| |
Collapse
|
31
|
Abstract
Coexisting dysfunction of heart and kidney, the cardiorenal syndrome, is a common condition and is associated with worsening of outcomes and complexities of diagnostic, preventive, and therapeutic approaches. The knowledge of the physiology of heart and kidney and their interaction with each other and with other organ systems has progressed significantly in recent years, resulting in a better understanding of the pathogenesis of cardiorenal syndrome. A robust knowledge of the pathophysiology and of the latest practical advancements about cardiorenal syndrome is necessary for cardiologists, nephrologists, and other practitioners who provide medical care to the patients with heart and kidney diseases.
Collapse
Affiliation(s)
- Parta Hatamizadeh
- Department of Medicine, Division of Nephrology, Hypertension & Renal Transplantation, University of Florida, 1600 SW Archer Road, CG-98, PO Box 100224, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Bartneck M. Lipid nanoparticle formulations for targeting leukocytes with therapeutic RNA in liver fibrosis. Adv Drug Deliv Rev 2021; 173:70-88. [PMID: 33774114 DOI: 10.1016/j.addr.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Obesity and low-grade inflammation are promoters of a multitude of diseases including liver fibrosis. Activation of the mobile leukocytes has a major impact on the outcome of inflammatory disease and can hence foster or mitigate liver fibrosis. This renders immunological targets valuable for directed interventions using nanomedicines. Particularly, RNA-based drugs formulated as lipid nanoparticles (LNP) can open new avenues for the personalized treatment of liver fibrosis both through specific interference and via the induction of the expression of functional and therapeutic proteins. Using microfluidics technology, all components, including lipid-anchored targeting ligands, are assembled in a single-step mixing process. A highlight is set to immunologically relevant liver cell types that are most vulnerable for being reached by LNP. A selection of LNP from other therapeutic fields applicable for reaching these cells in liver fbrosis is summarized. Furthermore, recent proceedings and major obstacles in the field of these targeted LNP are presented.
Collapse
|
33
|
Schutz Y, Montani JP, Dulloo AG. Low-carbohydrate ketogenic diets in body weight control: A recurrent plaguing issue of fad diets? Obes Rev 2021; 22 Suppl 2:e13195. [PMID: 33471427 DOI: 10.1111/obr.13195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023]
Abstract
The most appropriate type of diets to maintain or lose body weight over the medium to long term has been a matter of controversy and debates for more than half a century. Both voluntarily and coercive food restriction, resulting in negative energy and macronutrient balance and hence weight loss, have not been designed to be maintained for the long term. By contrast, when a classical and traditional type of alimentation is consumed in ad lib conditions (e.g., the Mediterranean "diet"), it generally provides an appropriate nutritional density of essential macronutrients and micronutrients; it is hence appropriate for long-term use, and it provides several benefits for health if the compliance of the individuals is maintained over time. In this short review, we focus on four specific aspects: first, the need to agree on a clear definition of what is "low" versus "high" in terms of total carbohydrate intake and total fat intakes, both generally inversely related, in a representative individual with a certain lifestyle and a certain body morphology; second, the importance of discussing the duration over which it could be prescribed, that is, acute versus chronic conditions, focusing on the comparison between the fashion and often ephemeral low-carbohydrate diet (acute) with the well-recognized traditional Mediterranean type of alimentation (chronic), which includes lifestyle changes; third, the particular metabolic characteristics induced by the low-carbohydrate (high fat) diet, namely, the scramble up of ketone bodies production. The recent debate on ketogenic diets concern whether or not, in iso-energetic conditions, low-carbohydrate diets would significantly enhance energy expenditure. This is an issue that is more "academic" than practical, on the ground that the putative difference of 100-150 kcal/day or so (in the recent studies) is not negligible but within the inherent error of the methodology used to track total energy expenditure in free living conditions by the doubly labeled water technique. Fourth, the potential medical risks and shortcomings of ingesting (over the long term) low-carbohydrate ketogenic diets could exacerbate underlying renal dysfunction, consecutive to the joint combination of high-fat, high-protein diets, particularly in individuals with obesity. This particular diet promotes metabolic acidosis and renal hyperfiltration, which ultimately may contribute to a significant reduction in life expectancy in middle-age people.
Collapse
Affiliation(s)
- Yves Schutz
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
34
|
Medeiros KA, Siqueira BS, Urrutia MAD, Porto EM, Grassiolli S, Amorim JPDA. Vagotomy associated with splenectomy reduces lipid accumulation and causes kidneys histological changes in rats with hypothalamic obesity. Acta Cir Bras 2021; 36:e360205. [PMID: 33624722 PMCID: PMC7902077 DOI: 10.1590/acb360205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the influence of autonomic vagal and splenic activities on renal
histomorphometric aspects in obese rats. Methods Thirty male Wistar rats were used, of which, 24 received subcutaneous
injections of monosodium glutamate (MSG) during the first 5 days of life (4
g/kg body weight) and six control animals received injections of saline
solution (CON). Five experimental groups were organized (n = 6/group):
falsely-operated control (CON-FO); falsely-operated obese (MSG-FO);
vagotomized obese (MSG-VAG); splenectomized obese (MSG-SPL); vagotomized and
splenectomized obese (MSG-VAG-SPL). Results The MSG-FO group animals showed a significant reduction in body weight and
nasal-anal length when compared to CON-FO group animals (p < 0.05). The
MSG-VAG-SPL group showed significant reduced in most biometric parameters
associated with obesity. Falsely-operated obese animals showed a significant
reduction in renal weight, glomerular diameters, glomerular tuff and capsule
areas and Bowman’s space compared to CON-FO group animals (p < 0.05).
There was a significant reduction in diameter, glomerular tuft and capsule
areas, and Bowman’s space in MSG-VAG, MSG-SPL, MSG-VAG-SPL groups when
compared to the MSG-FO group. Conclusions Vagotomy associated with splenectomy induces a reduction in the adiposity and
causes histological changes in the kidney of obese rats.
Collapse
|
35
|
Zhao Q, Yi X, Wang Z. Meta-Analysis of the Relationship between Abdominal Obesity and Diabetic Kidney Disease in Type 2 Diabetic Patients. Obes Facts 2021; 14:338-345. [PMID: 34148035 PMCID: PMC8406252 DOI: 10.1159/000516391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The meta-analysis aimed to investigate the association of visceral fat area (VFA), waist circumference (WC), waist-hip ratio (WHR) and waist-height ratio (WHtR) with diabetic kidney disease (DKD) in type 2 diabetic patients. METHODS Included studies were searched from Pubmed, Embase, and the Cochrane Library before July 2020. We synthesized the pooled results of the above relationships by meta-analysis. RESULTS Fourteen cross-sectional studies were enrolled. The pooled results indicated there was a significant difference in continuous VFA, WC and WHR/WHtR between patients with DKD and those without DKD (standard mean difference, SMD, 0.24, 95% confidence interval, CI, 0.13-0.36, p = 0.000). For VFA, patients with DKD had higher VFA levels than those without DKD (SMD 0.27, 95% CI 0.03-0.50). In the WC subgroup, patients with DKD had higher WC levels than those without DKD (SMD 0.17, 95% CI 0.10-0.24); similarly, abdominal obesity (dichotomized WC) was significantly associated with an increase in the odds of DKD (expected shortfall, ES, 1.57, 95% CI 1.32-1.86). However, the association of continuous WHR/WHtR with DKD was not statistically significant (SMD 0.43, 95% CI -0.12 to 0.97), while we found this relationship was statistically significant when analyzed categorically (ES 1.58, 95% CI 1.22-2.06). CONCLUSION In this meta-analysis, we found abdominal obesity parameters (continuous VFA, WC) were associated with increased odds of DKD, and type 2 diabetic patients with DKD were more likely to have abdominal obesity (categorized using WC or WHR/WHtR).
Collapse
Affiliation(s)
- Qinying Zhao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Yi
- First Branch of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence to: Zhihong Wang,
| |
Collapse
|
36
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
37
|
Augmented transcripts of kidney injury markers and renin angiotensin system in urine samples of overweight young adults. Sci Rep 2020; 10:21154. [PMID: 33273645 PMCID: PMC7713175 DOI: 10.1038/s41598-020-78382-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity has been firmly established as a major risk factor for common disease states including hypertension, type 2 diabetes mellitus, and chronic kidney disease. Increased body mass index (BMI) contributes to the activation of both the systemic and intra-tubular renin angiotensin systems (RAS), which are in turn associated with increased blood pressure (BP) and kidney damage. In this cross-sectional study, 43 subjects of normal or increased body weight were examined in order to determine the correlation of BMI or body fat mass (BFM) with blood pressure, fasting blood glucose (FBG), and urinary kidney injury markers such as interleukin-18 (IL-18), connective tissue growth factor (CTGF), neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 (KIM-1). Our results showed that: (1) subjects with increased body weight showed significantly higher BP, BFM, total body water and metabolic age; (2) BMI was positively correlated to both systolic (R2 = 0.1384, P = 0.01) and diastolic BP (R2 = 0.2437, P = 0.0008); (3) BFM was positively correlated to DBP (R2 = 0.1232, P = 0.02) and partially correlated to urine protein (R2 = 0.047, P = 0.12) and FBG (R2 = 0.07, P = 0.06); (4) overweight young adults had higher urinary mRNA levels of renin, angiotensinogen, IL-18 and CTGF. These suggest that BMI directly affects BP, kidney injury markers, and the activation of the intra-tubular RAS even in normotensive young adults. Given that BMI measurements and urine analyses are non-invasive, our findings may pave the way to developing a new and simple method of screening for the risk of chronic kidney disease in adults.
Collapse
|
38
|
Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, do Carmo JM. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res 2020; 117:1859-1876. [PMID: 33258945 DOI: 10.1093/cvr/cvaa336] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity contributes 65-75% of the risk for human primary (essential) hypertension (HT) which is a major driver of cardiovascular and kidney diseases. Kidney dysfunction, associated with increased renal sodium reabsorption and compensatory glomerular hyperfiltration, plays a key role in initiating obesity-HT and target organ injury. Mediators of kidney dysfunction and increased blood pressure include (i) elevated renal sympathetic nerve activity (RSNA); (ii) increased antinatriuretic hormones such as angiotensin II and aldosterone; (iii) relative deficiency of natriuretic hormones; (iv) renal compression by fat in and around the kidneys; and (v) activation of innate and adaptive immune cells that invade tissues throughout the body, producing inflammatory cytokines/chemokines that contribute to vascular and target organ injury, and exacerbate HT. These neurohormonal, renal, and inflammatory mechanisms of obesity-HT are interdependent. For example, excess adiposity increases the adipocyte-derived cytokine leptin which increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway. Excess visceral, perirenal and renal sinus fat compress the kidneys which, along with increased RSNA, contribute to renin-angiotensin-aldosterone system activation, although obesity may also activate mineralocorticoid receptors independent of aldosterone. Prolonged obesity, HT, metabolic abnormalities, and inflammation cause progressive renal injury, making HT more resistant to therapy and often requiring multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes, and inflammation. More effective anti-obesity drugs are needed to prevent the cascade of cardiorenal, metabolic, and immune disorders that threaten to overwhelm health care systems as obesity prevalence continues to increase.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Alan J Mouton
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Alexandre A da Silva
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Ana C M Omoto
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Zhen Wang
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Xuan Li
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| | - Jussara M do Carmo
- Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA
| |
Collapse
|
39
|
Mróz J, Białek Ł, Gozdowska J, Sadowska-Jakubowicz A, Czerwińska K, Durlik M. Formulas Estimating Glomerular Filtration Rate in the Evaluation of Living Kidney Donor Candidates: Comparison of Different Formulas With Scintigraphy-Measured Glomerular Filtration Rate. Transplant Proc 2020; 53:773-778. [PMID: 33248721 DOI: 10.1016/j.transproceed.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Estimation of kidney function is crucial in the evaluation of living kidney donor candidates. Despite the multitude of glomerular filtration rate (GFR) formulas, no equation is universal, and none were validated in the population of kidney donors. Novel biomarkers, including beta trace protein (BTP) and cystatin C, are studied to help estimate GFR and improve the safe qualification of living kidney donors. AIM This study compares the accuracy of different formulas that estimate GFR with reference scintigraphy-measured GFR in the population of living kidney donor candidates. MATERIAL AND METHODS This study enrolled 30 healthy living kidney donor candidates. GFR was measured using the following 11 different formulas. For reference, GFR was assessed using 99m-Technetium-diethylenetriaminepentaacetic acid. RESULTS The accuracy of estimation was generally low in all formulas. The strongest correlation between measured GFR (mGFR) and estimated GFR (eGFR) was achieved by the Nankivell formula (R = 0.47, P = .009); however, in the group of patients with a body mass index of >25 kg/m2, only the equations based on BTP had a statistically significant correlation with mGFR: White (R = 0.59; P = .016) and Poge (R = 0.53; P = .035). Bland-Altman plots revealed wide limits of agreement between eGFRs and mGFR in all groups of patients. CONCLUSION In living kidney donor candidates, GFR estimation formulas should be chosen individually. White formula, which is based on BTP, may be a promising tool in estimating GFR in overweight potential living kidney donor candidates. More than 1 formula and personalized choice of GFR estimation method regarding the given patient should be performed in qualification of kidney donors.
Collapse
Affiliation(s)
- Julia Mróz
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland
| | - Łukasz Białek
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland
| | - Jolanta Gozdowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland.
| | - Anna Sadowska-Jakubowicz
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland
| | - Katarzyna Czerwińska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Poland
| |
Collapse
|
40
|
Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. Int J Mol Sci 2020; 21:ijms21051559. [PMID: 32106480 PMCID: PMC7084483 DOI: 10.3390/ijms21051559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are visceral epithelial cells covering the outer surface of glomerular capillaries in the kidney. Blood is filtered through the slit diaphragm of podocytes to form urine. The functional and structural integrity of podocytes is essential for the normal function of the kidney. As a membrane-bound organelle, lysosomes are responsible for the degradation of molecules via hydrolytic enzymes. In addition to its degradative properties, recent studies have revealed that lysosomes may serve as a platform mediating cellular signaling in different types of cells. In the last decade, increasing evidence has revealed that the normal function of the lysosome is important for the maintenance of podocyte homeostasis. Podocytes have no ability to proliferate under most pathological conditions; therefore, lysosome-dependent autophagic flux is critical for podocyte survival. In addition, new insights into the pathogenic role of lysosome and associated signaling in podocyte injury and chronic kidney disease have recently emerged. Targeting lysosomal functions or signaling pathways are considered potential therapeutic strategies for some chronic glomerular diseases. This review briefly summarizes current evidence demonstrating the regulation of lysosomal function and signaling mechanisms as well as the canonical and noncanonical roles of podocyte lysosome dysfunction in the development of chronic glomerular diseases and associated therapeutic strategies.
Collapse
|
41
|
McPherson KC, Shields CA, Poudel B, Johnson AC, Taylor L, Stubbs C, Nichols A, Cornelius DC, Garrett MR, Williams JM. Altered renal hemodynamics is associated with glomerular lipid accumulation in obese Dahl salt-sensitive leptin receptor mutant rats. Am J Physiol Renal Physiol 2020; 318:F911-F921. [PMID: 32068459 DOI: 10.1152/ajprenal.00438.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 (Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lateia Taylor
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Cassandra Stubbs
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
42
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2020; 15:367-385. [PMID: 31015582 DOI: 10.1038/s41581-019-0145-4] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive adiposity raises blood pressure and accounts for 65-75% of primary hypertension, which is a major driver of cardiovascular and kidney diseases. In obesity, abnormal kidney function and associated increases in tubular sodium reabsorption initiate hypertension, which is often mild before the development of target organ injury. Factors that contribute to increased sodium reabsorption in obesity include kidney compression by visceral, perirenal and renal sinus fat; increased renal sympathetic nerve activity (RSNA); increased levels of anti-natriuretic hormones, such as angiotensin II and aldosterone; and adipokines, particularly leptin. The renal and neurohormonal pathways of obesity and hypertension are intertwined. For example, leptin increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway, and kidney compression and RSNA contribute to renin-angiotensin-aldosterone system activation. Glucocorticoids and/or oxidative stress may also contribute to mineralocorticoid receptor activation in obesity. Prolonged obesity and progressive renal injury often lead to the development of treatment-resistant hypertension. Patient management therefore often requires multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes and inflammation. If more effective strategies for the prevention and control of obesity are not developed, cardiorenal, metabolic and other obesity-associated diseases could overwhelm health-care systems in the future.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
43
|
Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Can J Cardiol 2020; 36:671-682. [PMID: 32389340 DOI: 10.1016/j.cjca.2020.02.066] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia and insulin resistance were proposed more than 30 years ago to be important contributors to elevated blood pressure (BP) associated with obesity and the metabolic syndrome, also called syndrome X. Support for this concept initially came from clinical and population studies showing correlations among hyperinsulinemia, insulin resistance, and elevated BP in individuals with metabolic syndrome. Short-term studies in experimental animals and in humans provided additional evidence that hyperinsulinemia may evoke increases in sympathetic nervous system (SNS) activity and renal sodium retention that, if sustained, could increase BP. Although insulin infusions may increase SNS activity and modestly raise BP in rodents, chronic insulin administration does not significantly increase BP in lean or obese insulin-resistant rabbits, dogs, horses, or humans. Multiple studies in humans and experimental animals have also shown that severe insulin resistance and hyperinsulinemia may occur in the absence of elevated BP. These observations question whether insulin resistance and hyperinsulinemia are major factors linking obesity/metabolic syndrome with hypertension. Other mechanisms, such as physical compression of the kidneys, activation of the renin-angiotensin-aldosterone system, hyperleptinemia, stimulation of the brain melanocortin system, and SNS activation, appear to play a more critical role in initiating hypertension in obese subjects with metabolic syndrome. However, the metabolic effects of insulin resistance, including hyperglycemia and dyslipidemia, appear to interact synergistically with increased BP to cause vascular and kidney injury that can exacerbate the hypertension and associated injury to the kidneys and cardiovascular system.
Collapse
|
44
|
The effect of a multidisciplinary weight loss program on renal circadian rhythm in obese adolescents. Eur J Pediatr 2019; 178:1849-1858. [PMID: 31486897 DOI: 10.1007/s00431-019-03456-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Adolescent obesity is a serious health problem associated with many comorbidities. Obesity-related alterations in circadian rhythm have been described for nocturnal blood pressure and for metabolic functions. We believe renal circadian rhythm is also disrupted in obesity, though this has not yet been investigated. This study aimed to examine renal circadian rhythm in obese adolescents before and after weight loss.In 34 obese adolescents (median age 15.7 years) participating in a residential weight loss program, renal function profiles and blood samples were collected at baseline, after 7 months, and again after 12 months of therapy. The program consisted of dietary restriction, increased physical activity, and psychological support. The program led to a median weight loss of 24 kg and a reduction in blood pressure. Initially, lower diurnal free water clearance (- 1.08 (- 1.40-- 0.79) mL/min) was noticed compared with nocturnal values (0.75 (- 0.89-- 0.64) mL/min). After weight loss, normalization of this inverse rhythm was observed (day - 1.24 (- 1.44-1.05) mL/min and night - 0.98 (- 1.09-- 0.83) mL/min). A clear circadian rhythm in diuresis rate and in renal clearance of creatinine, solutes, sodium, and potassium was seen at all time points. Furthermore, we observed a significant increase in sodium clearance. Before weight loss, daytime sodium clearance was 0.72 mL/min (0.59-0.77) and nighttime clearance was 0.46 mL/min (0.41-0.51). After weight loss, daytime clearance increased to 0.99 mL/min (0.85-1.17) and nighttime clearance increased to 0.78 mL/min (0.64-0.93).Conclusion: In obese adolescents, lower diurnal free water clearance was observed compared with nocturnal values. Weight loss led to a normalization of this inverse rhythm, suggesting a recovery of the anti-diuretic hormone activity. Both before and after weight loss, clear circadian rhythm of diuresis rate and renal clearance of creatinine, solutes, sodium, and potassium was observed.What is Known:• Obesity-related alterations in circadian rhythm have been described for nocturnal blood pressure and for metabolic functions. We believe renal circadian rhythm is disrupted in obesity, though this has not been investigated yet.What is New:• In obese adolescents, an inverse circadian rhythm of free water clearance was observed, with higher nighttime free water clearance compared with daytime values. Weight loss led to a normalization of this inverse rhythm, suggesting a recovery of the anti-diuretic hormone activity.• Circadian rhythm in diuresis rate and in the renal clearance of creatinine, solutes, sodium, and potassium was preserved in obese adolescents and did not change after weight loss.
Collapse
|
45
|
Nutritional Aspects in Diabetic CKD Patients on Tertiary Care. ACTA ACUST UNITED AC 2019; 55:medicina55080427. [PMID: 31374951 PMCID: PMC6723094 DOI: 10.3390/medicina55080427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Background and objectives: Diabetes is largely prevalent in the chronic kidney disease (CKD) population. Both conditions have metabolic and nutritional abnormalities that affect body composition and the presence of diabetes makes the dietary management of CKD patients more difficult. The aim of this study was to assess peculiar nutritional and functional aspects of diabetic patients in an adult/elderly CKD population, and their predictive significance. Materials and methods: This prospective cohort study included 144 out-patients aged >55 years, affected by stage 3b-4 CKD, on tertiary care clinic; 48 (40 males) were type 2 diabetics and 96 (80 males) were nondiabetics. The two groups have similar age, gender, and residual renal function (30 ± 9 vs. 31 ± 11 mL/min×1.73). All patients underwent a comprehensive nutritional and functional assessment and were followed for 31 ± 14 months. Results: Diabetic CKD patients showed higher waist circumference and fat body mass, lower muscle mass, and lower number of steps per day and average daily METs. Meanwhile, resting energy expenditure (REE), as assessed by indirect calorimetry, and dietary energy intake were similar as well as hand-grip and 6 min walking test. Diabetic patients did not show a greater risk for all-cause mortality and renal death with respect to nondiabetics. Middle arm muscle circumference, phase angle, serum cholesterol, and serum albumin were negatively related to the risk of mortality and renal death after adjustment for eGFR. Conclusions: CKD diabetic patients differed from nondiabetics for a greater fat mass, lower muscle mass, and lower physical activity levels. This occurred at the same REE and dietary energy intake. The outcome of diabetic or nondiabetic CKD patients on tertiary care management was similar in terms of risk for mortality or renal death. Given the same residual renal function, low levels of muscle mass, phase angle, serum albumin, and cholesterol were predictive of poor outcome. Overall, a malnutrition phenotype represents a major predictor of poor outcome in diabetic and nondiabetic CKD patients.
Collapse
|
46
|
Gong L, Jiang F, Zhang Z, Wang X, Li H, Kuang Y, Yang G. Catheter-Based Renal Denervation Attenuates Kidney Interstitial Fibrosis in a Canine Model of High-Fat Diet-Induced Hypertension. Kidney Blood Press Res 2019; 44:628-642. [PMID: 31291627 DOI: 10.1159/000500918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Catheter-based renal denervation (RDN) has emerged as an innovative interventional approach for reducing blood pressure (BP), suppressing ventricular substrate remodeling, and attenuating heart failure, which suggests that it might reduce kidney fibrosis in a canine model of high-fat diet-induced hypertension. This study thus sought to assess whether RDN could reduce kidney fibrosis and halt the progression of renal impairment in a canine model of high-fat diet-induced hypertension. METHODS Thirty-two beagles were randomized into either the normal control group (normal diet, n = 10) or the hypertension group (high-fat diet, n = 22). After successful establishment of the model, the hypertension model group was randomized to either the RDN group (n = 9) or the sham-surgery group (n = 8). Renal artery angiography, BP, heart rate (HR), and blood and urine biochemistry results were assessed at 1, 3, and 6 months after surgery. Canines were sacrificed at 6 months after surgery. The extent of kidney interstitial fibrosis, transforming growth factor-beta 1, alpha-smooth muscle actin, connective tissue growth factor, and E-cadherin protein were measured. RESULTS The group fed a high-fat diet had significantly (p ˂ 0.05) increased body weight, BP, and HR and higher levels of urine albumin, serum noradrenaline (NE), and angiotensin II (AngII) than the control group. The sham-surgery group and RDN group also had higher levels than the control group (p ˂ 0.05). Compared with the sham-surgery group, the RDN group had lower BP, urine albumin, serum NE, and AngII and less fibrotic tissue (all p ˂ 0.05). CONCLUSION RDN reduced BP, slowed progression of albuminuria, and suppressed renal remodeling in a canine model of high-fat diet-induced hypertension.
Collapse
Affiliation(s)
- Liying Gong
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Clinical Pharmacology Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fenglin Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China,
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinguo Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan Kuang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guoping Yang
- Department of Clinical Pharmacology Center, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
47
|
Elhefnawy KA, Elsayed AM. Prevalence of diabetic kidney disease in patients with type 2 diabetes mellitus. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_113_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
48
|
Night-time cardiac autonomic modulation as a function of sleep-wake stages is modified in otherwise healthy overweight adolescents. Sleep Med 2019; 64:30-36. [PMID: 31655323 DOI: 10.1016/j.sleep.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Even though sympathetic dominance during the daytime period is well known, currently, scarce data exist on autonomic nervous system (ANS) regulation during sleep in pediatric obesity. We aimed to evaluate sleep cardiac ANS regulation in normal-weight (NW) and overweight and obese (OW) adolescents. PATIENTS/METHODS In this study, 60 healthy adolescents (15.7 ± 0.7 years) belonging to a birth cohort since infancy were classified based on body mass index percentiles criteria as: OW (N = 27) or NW (N = 33). Sleep was evaluated by polysomnography (PSG) during two consecutive in-lab overnight sessions. Non-rapid eye movement (non-REM) sleep stages (stages 1, 2, and slow-wave sleep [SWS]), rapid eye movement (REM) sleep, and wakefulness (Wake) were scored. R-waves were detected automatically in the electrocardiographic (ECG) signal. An all-night heart rate variability analysis was conducted in the ECG signal, with several time- and frequency-domain measures calculated for each sleep-wake stage. Sleep time was divided into thirds (T1, T2, T3). The analysis was performed using a mixed-effects linear regression model. RESULTS Sleep organization was comparable except for reduced REM sleep percentage in the OW group (p < 0.04). Shorter R-R intervals were found for all sleep stages in the OW group; time-domain measured standard deviation of all R-R intervals (RRSD) was lower during stage 2, SWS and REM sleep (all p < 0.05). The square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD) was also lower only during wake after sleep onset (WASO) in T1 and T3 (p < 0.05). The OW group had increased very low- and low-frequency (LF) power during WASO (in T1 and T2), and LF power during stage 2 and REM sleep (in T2). During WASO in the OW group, high-frequency (HF) power was lower (in T1 and T2), and LF/HF ratio was higher (in T2, p < 0.007). CONCLUSIONS Several sleep-stage-dependent changes in cardiac autonomic regulation characterized the OW group. As sleep-related ANS balance was disturbed in the absence of concomitant metabolic alterations in this sample of otherwise healthy OW adolescents, their relevance for pediatric obesity should be further explored throughout development.
Collapse
|
49
|
Zhang W, Chen H, Sun C, Wu B, Bai B, Liu H, Shan X, Liang G, Zhang Y. A novel resveratrol analog PA19 attenuates obesity‑induced cardiac and renal injury by inhibiting inflammation and inflammatory cell infiltration. Mol Med Rep 2019; 19:4770-4778. [PMID: 31059027 PMCID: PMC6522815 DOI: 10.3892/mmr.2019.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Obesity is a major global health concern and induces numerous complications, such as heart and kidney injury. Inflammation is an important pathogenic mechanism underlying obesity‑associated tissue injury. (1E,4E)‑1‑{2,4‑Dimethoxy‑6‑[(E)‑4‑methoxystyryl]phenyl}‑5‑(2,4‑dimethoxyphenyl)penta‑1,4‑dien‑3‑one (PA19) is a novel anti‑inflammatory compound synthesized by our research group. In the present study, the efficacy of PA19 in attenuating high‑fat diet (HFD)‑induced heart and kidney injury was investigated. Heart and kidney pathological injury and fibrosis were detected by hematoxylin and eosin and Sirius red staining, respectively. The expression levels of inflammatory genes and fibrosis‑associated protein were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting. ELISA was used to detect the level of inflammatory cytokines. Following 20 weeks of HFD treatment, mice exhibited increased lipid accumulation in the serum, heart and kidney injury and fibrosis, and inflammation and inflammatory cell infiltration compared with mice fed a control diet. Conversely, treatment with PA19 during the final 12 weeks of the study significantly reduced the degree of heart and kidney fibrosis and inflammation induced by HFD. The results suggested that PA19 attenuates heart and kidney inflammation and injury induced by HFD, and indicated that PA19 may be a novel therapeutic agent in the treatment of obesity, and obesity‑induced cardiac and renal injury.
Collapse
Affiliation(s)
- Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Chuchu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Beibei Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hui Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoou Shan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
50
|
McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JM. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol 2018; 316:F316-F327. [PMID: 30539649 DOI: 10.1152/ajprenal.00162.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brianca Fizer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Pennington
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley Szabo-Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie L Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|