1
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Piubelli C, Castagna A, Marchi G, Rizzi M, Busti F, Badar S, Marchetti M, De Gobbi M, Roetto A, Xumerle L, Suku E, Giorgetti A, Delledonne M, Olivieri O, Girelli D. Identification of new BMP6 pro-peptide mutations in patients with iron overload. Am J Hematol 2017; 92:562-568. [PMID: 28335084 DOI: 10.1002/ajh.24730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/09/2017] [Accepted: 03/18/2017] [Indexed: 12/16/2022]
Abstract
Hereditary Hemochromatosis (HH) is a genetically heterogeneous disorder caused by mutations in at least five different genes (HFE, HJV, TFR2, SLC40A1, HAMP) involved in the production or activity of the liver hormone hepcidin, a key regulator of systemic iron homeostasis. Nevertheless, patients with an HH-like phenotype that remains completely/partially unexplained despite extensive sequencing of known genes are not infrequently seen at referral centers, suggesting a role of still unknown genetic factors. A compelling candidate is Bone Morphogenetic Protein 6 (BMP6), which acts as a major activator of the BMP-SMAD signaling pathway, ultimately leading to the upregulation of hepcidin gene transcription. A recent seminal study by French authors has described three heterozygous missense mutations in BMP6 associated with mild to moderate late-onset iron overload (IO). Using an updated next-generation sequencing (NGS)-based genetic test in IO patients negative for the classical HFE p.Cys282Tyr mutation, we found three BMP6 heterozygous missense mutations in four patients from three different families. One mutation (p.Leu96Pro) has already been described and proven to be functional. The other two (p.Glu112Gln, p.Arg257His) were novel, and both were located in the pro-peptide domain known to be crucial for appropriate BMP6 processing and secretion. In silico modeling also showed results consistent with their pathogenetic role. The patients' clinical phenotypes were similar to that of other patients with BMP6-related IO recently described. Our results independently add further evidence to the role of BMP6 mutations as likely contributing factors to late-onset moderate IO unrelated to mutations in the established five HH genes.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Annalisa Castagna
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Giacomo Marchi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monica Rizzi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Fabiana Busti
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Sadaf Badar
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monia Marchetti
- Hematology section, Oncology Unit; Azienda Sanitaria Locale, Ospedale “Cardinal Massaia”; Asti Italy
| | - Marco De Gobbi
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Luciano Xumerle
- Department of Biotechnology; University of Verona; Verona Italy
| | - Eda Suku
- Department of Biotechnology; University of Verona; Verona Italy
| | | | | | - Oliviero Olivieri
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Domenico Girelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| |
Collapse
|