1
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
3
|
Rogler G, Scharl M, Spalinger M, Yilmaz B, Zaugg M, Hersberger M, Schreiner P, Biedermann L, Herfarth H. Diet and Inflammatory Bowel Disease: What Quality Standards Should Be Applied in Clinical and Laboratory Studies? Mol Nutr Food Res 2021; 65:e2000514. [PMID: 33433954 DOI: 10.1002/mnfr.202000514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Many patients suffering from inflammatory bowel disease (IBD) follow restrictive diets, as many respective recommendations circulate. Efforts are made to evaluate and summarize the published information, for example, in a recent consensus manuscript by the International Organization for the Study of IBD (IOIBD). However, the standards that should be applied to make claims about dietary effects are poorly defined. In this manuscript, the scientific basis of recommendations for nutritional interventions in IBD is analyzed. Epidemiological evidence on diet in IBD is always biased by numerous factors, and the number of robust dietary intervention studies is limited due to methodological difficulties. Therefore, animal models are used to test hypotheses with respect to dietary factors and intestinal inflammation. Naturally, animal models have limitations, and knowledge of key characteristics of colitis animal models is crucial to understand their advantages and disadvantages. In recent years the important role of the microbiota for IBD and dietary factors has been discovered. Microbiota data are added to many publications on IBD and nutrition. The quality of those data varies largely. Subsequently, quality standards for microbiota analyses also are discussed. Finally, quality requirements to be applied on recommendations for dietary changes in patients with IBD are suggested.
Collapse
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Marianne Spalinger
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University Clinic of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, 3010, Switzerland
| | - Michael Zaugg
- Department of Pharmacology and Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich 8091, Switzerland
| | - Hans Herfarth
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 27599-7080, USA
| |
Collapse
|