1
|
Deng M, Huang P, Wang L, Jiang Y, Guo Z, Duan H, Zha J, Zhao H, Li G, Xu B. The synergy of TPL and selinexor in MLL-R acute myeloid leukemia via Rap1/Raf/MEK pathway-mediated MYC downregulation. Transl Oncol 2025; 57:102399. [PMID: 40373471 DOI: 10.1016/j.tranon.2025.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/25/2024] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
MLL gene rearrangement recurrently occurs in acute myeloid leukemia (MLL-r AML), which is closely associated with chemotherapy insensitivity and unfavorable clinical outcomes. More importantly, there are limited therapeutic options for the management of patients with MLL-r AML, thus necessitating novel effective treatment strategies. In this study, we demonstrated that low doses of triptolide (LD TPL) and the XPO1 inhibitor selinexor exerted synergistic therapeutic effects on poor-outcome MLL-r AML in vitro, ex vivo and in vivo. Induction of mitochondrial outer membrane permeabilization (MOMP) and initiation of the mitochondrial apoptotic pathway were closely involved in the therapeutic synergy of LD TPL in combination with selinexor against MLL-r AML. Mechanistically, MYC downregulation mediated by the Rap1/Raf/MEK/ERK pathway rather than by PI3K/AKT signaling was implicated in the synergistic activity of the combined regimen. In addition, the induction of DNA damage also contributed to the synergistic effects of the combined regimen on MLL-r AML. In summary, our findings suggest that LD TPL in combination with selinexor might represent a promising therapeutic approach for the treatment of MLL-r AML. However, future clinical trials are mandatory to draw a decisive conclusion.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Peicui Huang
- Department of Hematology, Huizhou Municipal Central Hospital, Huizhou, 516001, PR China
| | - Lijuan Wang
- Department of Emergency, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Zhenling Guo
- Department of Hematology, Huizhou Municipal Central Hospital, Huizhou, 516001, PR China
| | - Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
| | - Guowei Li
- Department of Hematology, Huizhou Municipal Central Hospital, Huizhou, 516001, PR China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China; Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
| |
Collapse
|
2
|
Stecko H, Tsilimigras D, Iyer S, Daw J, Zhu H, Huang E, Kalady M, Pawlik TM. Association of non-gain-of-function alterations in exportin-1 with improved overall survival in colorectal cancer. J Gastrointest Surg 2025; 29:101990. [PMID: 39947513 DOI: 10.1016/j.gassur.2025.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Upregulation of nuclear export protein exportin-1 (coded by gene XPO1) has been previously demonstrated in multiple cancer subtypes, contributing to pharmacotherapy resistance and increased recurrence rates. This study aimed to explore the effect of non-gain-of-function (GOF) XPO1 alterations in patients with colorectal cancer (CRC). METHODS Patients with colon/rectal/colorectal adenocarcinoma were identified from the Memorial Sloan Kettering Clinicogenomic, Harmonized Oncologic Real-World Dataset using cBioPortal. A subpopulation with alterations in XPO1 was identified. Patients with known amplifications and GOF E571K and R749Q alterations were excluded, as were patients with in situ and stage IV disease. Survival analysis was performed via Kaplan-Meier and Cox proportional hazards analyses, adjusted for patient age and disease stage. RESULTS Among 5543 patients with CRC, 83 (1.5%) had alterations in the XPO1 locus, and 5460 patients (98.5%) did not. Of patients with XPO1 alteration, 66 (79.5%) had non-GOF alterations, and 17 (21.5%) had GOF point mutations or amplifications. Patients with non-GOF XPO1 alteration had a mortality hazard ratio of 0.601 (95% CI, 0.463-0.805; P =.011). When adjusted for patient age and disease stage, XPO1 co-alteration was associated with improved overall survival (OS) in patients with alterations in TP53, APC, FBXW7, SMAD4, and BRAF genes (all P <.01). CONCLUSION XPO1 alterations were associated with improved OS in patients with CRC. Associated survival benefits persisted when co-alterations were present, particularly in co-alterations with intranuclear tumor suppressor proteins.
Collapse
Affiliation(s)
- Hunter Stecko
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States; The Ohio State University College of Medicine, Columbus, OH, United States
| | - Diamantis Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Sidharth Iyer
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States; The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jad Daw
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Emily Huang
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Matthew Kalady
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States.
| |
Collapse
|
3
|
Khakwani MMAK, Ji XY, Khattak S, Sun YC, Yao K, Zhang L. Targeting colorectal cancer at the level of nuclear pore complex. J Adv Res 2025; 70:423-444. [PMID: 38876192 PMCID: PMC11976419 DOI: 10.1016/j.jare.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are the architectures entrenched in nuclear envelop of a cell that regulate the nucleo-cytoplasmic transportation of materials, such as proteins and RNAs for proper functioning of a cell. The appropriate localization of proteins and RNAs within the cell is essential for its normal functionality. For such a complex transportation of materials across the NPC, around 60 proteins are involved comprising nucleoporins, karyopherins and RAN system proteins that play a vital role in NPC's structure formation, cargo translocation across NPC, and cargoes' rapid directed transportation respectively. In various cancers, the structure and function of NPC is often exaggerated, following altered expressions of its nucleoporins and karyopherins, affecting other proteins of associated signaling pathways. Some inhibitors of karyopherins at present, have potential to regulate the altered level/expression of these karyopherin molecules. AIM OF REVIEW This review summarizes the data from 1990 to 2023, mainly focusing on recent studies that illustrate the structure and function of NPC, the relationship and mechanisms of nucleoporins and karyopherins with colorectal cancer, as well as therapeutic values, in order to understand the pathology and underlying basis of colorectal cancer associated with NPC. This is the first review to our knowledge elucidating the detailed updated studies targeting colorectal cancer at NPC. The review also aims to target certain karyopherins, Nups and their possible inhibitors and activators molecules as a therapeutic strategy. KEY SCIENTIFIC CONCEPTS OF REVIEW NPC structure provides understanding, how nucleoporins and karyopherins as key molecules are responsible for appropriate nucleocytoplasmic transportation. Many studies provide evidences, describing the role of disrupted nucleoporins and karyopherins not only in CRC but also in other non-hematological and hematological malignancies. At present, some inhibitors of karyopherins have therapeutic potential for CRC, however development of more potent inhibitors may provide more effective therapeutic strategies for CRC in near future.
Collapse
Affiliation(s)
- Muhammad Mahtab Aslam Khan Khakwani
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian, Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan 450064, China
| | - Saadullah Khattak
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ying-Chuan Sun
- Department of Internal Oncology (Section I), Xuchang Municipal Central Hospital, Xuchang, Henan 430000, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China.
| | - Lei Zhang
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng 475004, China; Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Tang Y, Liu R, Zhu J, He Q, Pan C, Zhou Z, Sun J, Li F, Zhang L, Shi Y, Yao J, Jiang D, Chen C. Positive Feedback Regulation between KLF5 and XPO1 Promotes Cell Cycle Progression of Basal like Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412096. [PMID: 39888288 PMCID: PMC12021099 DOI: 10.1002/advs.202412096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Basal-like breast cancer (BLBC), overlapping with the subgroup of estrogen receptor (ER), progesterone receptor (PR), and HER2 triple-negative breast cancer, has the worst prognosis and limited therapeutics. The XPO1 gene encodes nuclear export protein 1, a promising anticancer target which mediates nucleus-cytoplasm transport of nuclear export signal containing proteins such as tumor suppressor RB1 and some RNAs. Despite drugs targeting XPO1 are used in clinical, the regulation of XPO1 expression and functional mechanism is poorly understood, especially in BLBC. This study finds that KLF5 is a transcription factor of XPO1, which increases RB1 nuclear export and cell proliferation in BLBC cells. Furthermore, XPO1 interacts with the RNA-binding protein PTBP1 to export FOXO1 mRNA to cytoplasm and thus activates the FOXO1-KLF5 axis as a feedback. This work demonstrates that XPO1 inhibitor KPT-330 in combination with CDK4/6 inhibitor additively suppressed BLBC tumor growth in vivo. These results reveal a novel positive feedback regulation loop between KLF5 and XPO1 and provide a novel treatment strategy for BLBC.
Collapse
Affiliation(s)
- Yu Tang
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Rui Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Jing Zhu
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Qian He
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Chenglong Pan
- Department of PathologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032China
| | - Zhongmei Zhou
- School of Continuing EducationKunming Medical UniversityKunming650021China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Fubing Li
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Longlong Zhang
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Yujie Shi
- Department of PathologyHenan Provincial People's HospitalZhengzhou UniversityZhengzhou450003China
| | - Jing Yao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| |
Collapse
|
5
|
Sokolova V, Gruber R, Pammer LM, Kocher F, Klieser E, Amann A, Pichler R, Günther M, Ormanns S, Neureiter D, Seeber A. Prognostic and functional role of the nuclear export receptor 1 (XPO1) in gastrointestinal cancers: a potential novel target? Mol Biol Rep 2024; 52:87. [PMID: 39729162 PMCID: PMC11680630 DOI: 10.1007/s11033-024-10169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients. Molecular high-throughput profiling techniques have revealed potential novel targetable molecular alterations, emphasizing the necessity for tailored therapeutic approaches. Nuclear export proteins, particularly Exportin-1 (XPO1), have emerged as promising targets in cancer therapy due to their crucial role in cellular homeostasis and regulation of key cellular functions. Dysregulation of XPO1-mediated nuclear export leads to the functional loss of tumor suppressors and pro-apoptotic factors, facilitating cancer progression. Selinexor, a XPO1 inhibitor, has shown promising activity in preclinical and clinical studies, particularly in hematological malignancies. However, its efficacy in GI cancers remains underexplored. This review aims to elucidate the functional and pathophysiological role of XPO1 in GI cancers. Despite the potential of XPO1 inhibitors in suppressing cell proliferation and inducing apoptosis, comprehensive molecular landscape data and validation of selective inhibitors in GI cancers are lacking. Targeting XPO1 presents a significant therapeutic potential for the treatment of GI cancer patients. Further research is necessary to fully elucidate the molecular landscape according to XPO1 expression in GI tumors and to validate the efficacy of selective XPO1 inhibitors. These efforts are expected to contribute to the development of more effective and personalized therapeutic strategies for GI cancer patients.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Seeber
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy.
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Wang Y, Chen J, Gao Y, Chai KXY, Hong JH, Wang P, Chen J, Yu Z, Liu L, Huang C, Taib NAM, Lim KMH, Guan P, Chan JY, Huang D, Teh BT, Li W, Lim ST, Yu Q, Ong CK, Huang H, Tan J. CDK4/6 inhibition augments anti-tumor efficacy of XPO1 inhibitor selinexor in natural killer/T-cell lymphoma. Cancer Lett 2024; 597:217080. [PMID: 38908542 DOI: 10.1016/j.canlet.2024.217080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
XPO1 is an attractive and promising therapeutic target frequently overexpressed in multiple hematological malignancies. The clinical use of XPO1 inhibitors in natural killer/T-cell lymphoma (NKTL) is not well documented. Here, we demonstrated that XPO1 overexpression is an indicator of poor prognosis in patients with NKTL. The compassionate use of the XPO1 inhibitor selinexor in combination with chemotherapy showed favorable clinical outcomes in three refractory/relapsed (R/R) NKTL patients. Selinexor induced complete tumor regression and prolonged survival in sensitive xenografts but not in resistant xenografts. Transcriptomic profiling analysis indicated that sensitivity to selinexor was correlated with deregulation of the cell cycle machinery, as selinexor significantly suppressed the expression of cell cycle-related genes. CDK4/6 inhibitors were identified as sensitizers that reversed selinexor resistance. Mechanistically, targeting CDK4/6 could enhance the anti-tumor efficacy of selinexor via the suppression of CDK4/6-pRb-E2F-c-Myc pathway in resistant cells, while selinexor alone could dramatically block this pathway in sensitive cells. Overall, our study provids a preclinical proof-of-concept for the use of selinexor alone or in combination with CDK4/6 inhibitors as a novel therapeutic strategy for patients with R/R NKTL.
Collapse
Affiliation(s)
- Yali Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Kelila Xin Ye Chai
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinghong Chen
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Zhaoliang Yu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhen Liu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nur Ayuni Muhammad Taib
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Kerry May Huifen Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jason Yongsheng Chan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Wenyu Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Soon Thye Lim
- Director's Office, National Cancer Centre Singapore, Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore; Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Hainan Academy of Medical Science, Hainan Medical University, Haikou, China.
| |
Collapse
|
7
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Wang LH, Wei S, Yuan Y, Zhong MJ, Wang J, Yan ZX, Zhou K, Luo T, Liang L, Bian XW. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy 2024; 20:295-310. [PMID: 37712615 PMCID: PMC10813631 DOI: 10.1080/15548627.2023.2252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
ABBREVIATIONS AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ming-Jun Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu610000, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Kai Zhou
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| |
Collapse
|
10
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
11
|
Chai K, Wang C, Zhou J, Mu W, Gao M, Fan Z, Lv G. Quenching thirst with poison? Paradoxical effect of anticancer drugs. Pharmacol Res 2023; 198:106987. [PMID: 37949332 DOI: 10.1016/j.phrs.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Anticancer drugs have been developed with expectations to provide long-term or at least short-term survival benefits for patients with cancer. Unfortunately, drug therapy tends to provoke malignant biological and clinical behaviours of cancer cells relating not only to the evolution of resistance to specific drugs but also to the enhancement of their proliferation and metastasis abilities. Thus, drug therapy is suspected to impair long-term survival in treated patients under certain circumstances. The paradoxical therapeutic effects could be described as 'quenching thirst with poison', where temporary relief is sought regardless of the consequences. Understanding the underlying mechanisms by which tumours react on drug-induced stress to maintain viability is crucial to develop rational targeting approaches which may optimize survival in patients with cancer. In this review, we describe the paradoxical adverse effects of anticancer drugs, in particular how cancer cells complete resistance evolution, enhance proliferation, escape from immune surveillance and metastasize efficiently when encountered with drug therapy. We also describe an integrative therapeutic framework that may diminish such paradoxical effects, consisting of four main strategies: (1) targeting endogenous stress response pathways, (2) targeting new identities of cancer cells, (3) adaptive therapy- exploiting subclonal competition of cancer cells, and (4) targeting tumour microenvironment.
Collapse
Affiliation(s)
- Kaiyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wentao Mu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Menghan Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
12
|
Wulandari F, Ikawati M, Widyarini S, Kirihata M, Novitasari D, Kato JY, Meiyanto E. Tumour-suppressive effects of curcumin analogs CCA-1.1 and Pentagamavunone-1 in colon cancer: In vivo and in vitro studies. J Adv Pharm Technol Res 2023; 14:317-324. [PMID: 38107450 PMCID: PMC10723174 DOI: 10.4103/japtr.japtr_315_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to evaluate the efficacy of Chemoprevention Curcumin Analog-1.1 (CCA-1.1) and Pentagamavunone-1 (PGV-1) in vivo and in vitro in colorectal cancer model. CCA-1.1 or PGV-1 was administered orally to 1,2-dimethylhydrazine (DMH)-induced rats for 16 weeks. The cytotoxicity of both compounds was tested on Caco-2, CT26, and NIH/3T3 cells using the MTT method. The cell cycle, apoptosis, and reactive oxygen species (ROS) levels were analyzed through flow cytometry. X-gal staining was used to examine the compound's effect on senescence. Oral co-administration of CCA-1.1 or PGV-1 significantly suppressed the carcinogenic characteristics and symptoms of premalignant colon cancer relative to DMH-only and untreated groups. CCA-1.1 and PGV-1 administration did not affect the blood profile. CCA-1.1 and PGV-1 demonstrated great cytotoxicity on Caco-2 and CT26 cells, with 50% inhibition concentration (IC50) values of 4.3 ± 0.2 and 3.1 ± 0.1 µM for CCA-1.1 and 11.2 ± 1.1 and 4.8 ± 0.1 µM for PGV-1, respectively, while not toxic against fibroblast cells. Both compounds instigated G2/M arrest and efficiently induced cell senescence and apoptosis. Moreover, these analogs selectively elevated oxidative stress in colon cancer cells without inducing noticeable changes in fibroblasts. In conclusion, PGV-1 and CCA-1.1 suppressed colorectal tumor formation and induced mitotic arrest.
Collapse
Affiliation(s)
- Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| | - Muthi Ikawati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| | - Sitarina Widyarini
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta
| | - Mitsunori Kirihata
- Research Center for Boron Neutron Capture Therapy, Osaka Metropolitan University, Osaka, Japan
| | - Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta
| |
Collapse
|
13
|
Shen N, Wang L, Wu J, Chen X, Hu F, Su Y. Meta‑analysis of the autophagy‑associated protein LC3 as a prognostic marker in colorectal cancer. Exp Ther Med 2023; 26:492. [PMID: 37753301 PMCID: PMC10518644 DOI: 10.3892/etm.2023.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 (LC3) is an autophagy-associated gene, which is involved in the progression of a number of human malignancies. Such as Breast Cancer, Liver Cancer, and Lung Cancer. However, the role of LC3 in colorectal cancer (CC) remains to be fully elucidated. Therefore, the prognostic role of LC3 expression in CC was evaluated in the present study, with an emphasis on the clinicopathology and prognosis. Expression of LC3 in CC was examined using PubMed, Cochrane Library, Excerpta Medica Database, China Knowledge Infrastructure and Wanfang Data. Newcastle-Ottawa scale was used to screen the literature quality, and RevMan 5.4 and STATA 14.0 were used for the meta-analysis. A total of 1,689 patients from 10 studies were included in the present meta-analysis. The findings of the present study suggested that increased LC3 expression levels were associated with histological grade [odds ratio (OR)=0.91, 95% confidence interval (CI) (0.47, 1.77), P<0.001] and TNM stage [OR=0.91, 95% CI (0.47, 1.77), P<0.001], but were not associated with sex [OR=1.14, 95% CI (0.90, 1.51)], age [OR=0.89, 95% CI (0.67, 1.20)], tumor size [OR=0.78, 95% CI (0.30, 2.34)], histological grade [OR=0.82, 95% CI (0.43, 1.95)] and lymph node metastasis [OR=2.05, 95% CI (1.19, 3.60)] in CC. In addition, the increased expression of LC3 was revealed to be a prognostic factor for the overall survival of patients with CC. In conclusion, the autophagy-associated protein LC3 may be a prognostic indicator of human CC.
Collapse
Affiliation(s)
- Ning Shen
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Lijuan Wang
- Blood Purification Center, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jingjing Wu
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Xuefang Chen
- Blood Purification Center, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Fengchao Hu
- Department of Oncology, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Yi Su
- Quality Management Office, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| |
Collapse
|
14
|
Jian L, Zscherp R, Beutling U, Shen X, Xu S, Zhang X, Brönstrup M, Klahn P, Sun Q. Discovery of Aminoratjadone Derivatives as Potent Noncovalent CRM1 Inhibitors. J Med Chem 2023; 66:11940-11950. [PMID: 37595020 DOI: 10.1021/acs.jmedchem.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Cancer cells frequently utilize elevated nuclear export to escape tumor suppression and gain proliferative advantage. Chromosome Region Maintenance 1 (CRM1/XPO1) mediates macromolecule nuclear export and plays an important role in tumorigenesis and progression. The clinical approval of its covalent inhibitor KPT-330 (Selinexor) validates the feasibility of targeting CRM1 to treat cancers. Here, we synthesized four aminoratjadone derivatives and found that two of them, KL1 and KL2, are noncovalent CRM1 inhibitors. The two compounds underwent spontaneous hydrolysis in aqueous buffers, and the resulting products were more active against CRM1. High-resolution crystal structures revealed the CRM1-binding mode of these compounds and explained the observed structure-activity relationships. In cells, KL1 and KL2 localized CRM1 in the nuclear periphery and led to depletion of nuclear CRM1, thereby inhibiting the nuclear export and growth of colorectal cancer cells at submicromolar concentrations. This work lays the foundation for further development of aminoratjadone-based noncovalent CRM1 inhibitors.
Collapse
Affiliation(s)
- Lunan Jian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Robert Zscherp
- NaconLabs─A Technology Transfer Center of iTUBS mbH, Wilhelmsgarten 3, Braunschweig 38100, Germany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Shiyang Xu
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Xia Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Philipp Klahn
- NaconLabs─A Technology Transfer Center of iTUBS mbH, Wilhelmsgarten 3, Braunschweig 38100, Germany
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, Göteborg 412 96, Sweden
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610056, China
| |
Collapse
|
15
|
Gong L, Lu Y, Wang J, Li X, Zhao J, Chen Y, Ma R, Ma J, Liu T, Han S. Cocktail hepatocarcinoma therapy by a super-assembled nano-pill targeting XPO1 and ATR synergistically. J Pharm Anal 2023; 13:603-615. [PMID: 37440910 PMCID: PMC10334348 DOI: 10.1016/j.jpha.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Intensive cancer treatment with drug combination is widely exploited in the clinic but suffers from inconsistent pharmacokinetics among different therapeutic agents. To overcome it, the emerging nanomedicine offers an unparalleled opportunity for encapsulating multiple drugs in a nano-carrier. Herein, a two-step super-assembled strategy was performed to unify the pharmacokinetics of a peptide and a small molecular compound. In this proof-of-concept study, the bioinformatics analysis firstly revealed the potential synergies towards hepatoma therapy for the associative inhibition of exportin 1 (XPO1) and ataxia telangiectasia mutated-Rad3-related (ATR), and then a super-assembled nano-pill (gold nano drug carrier loaded AZD6738 and 97-110 amino acids of apoptin (AP) (AA@G)) was constructed through camouflaging AZD6738 (ATR small-molecule inhibitor)-binding human serum albumin onto the AP-Au supramolecular nanoparticle. As expected, both in vitro and in vivo experiment results verified that the AA@G possessed extraordinary biocompatibility and enhanced therapeutic effect through inducing cell cycle arrest, promoting DNA damage and inhibiting DNA repair of hepatoma cell. This work not only provides a co-delivery strategy for intensive liver cancer treatment with the clinical translational potential, but develops a common approach to unify the pharmacokinetics of peptide and small-molecular compounds, thereby extending the scope of drugs for developing the advanced combination therapy.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyue Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhao
- Department of Radiotherapy, The First Affiliated Hospital Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yuetong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rongze Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianya Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
16
|
Wang H, Teng X, Lin Y, Jiang C, Chen X, Zhang Y. Targeting XPO6 inhibits prostate cancer progression and enhances the suppressive efficacy of docetaxel. Discov Oncol 2023; 14:82. [PMID: 37243787 DOI: 10.1007/s12672-023-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Although XPO6, one of the Exportin family members, functions in malignant progression of certain types of cancer, its role in prostate cancer (PCa) has not been elucidated. Herein, we investigated the oncogenic effect and clarified the downstream mechanism of XPO6 in PCa cells. METHODS We detected the expression level of XPO6 in PCa tissues by immunohistochemistry (IHC) and analyzed the correlation between clinicopathological characteristics and XPO6 level based on TCGA database. The effects of XPO6 in the proliferation and migration or resistance to docetaxel (DTX) in PCa cells were assessed using CCK8, colony formation, wound-healing and Transwell assays. Mice experiments were performed to investigate the role of XPO6 in tumor progression and DTX effect in vivo. Further, functional analysis of DEGs revealed the correlation of XPO6 with Hippo pathway and XPO6 could promote the expression and nuclear translocation of YAP1 protein. Furthermore, blocking Hippo pathway with YAP1 inhibitor leads to the loss of XPO6-mediated regulation of biological functions. RESULTS XPO6 was highly expressed and positively correlated with the clinicopathological characteristics of PCa. Functional experiments indicated that XPO6 could promote tumor development and DTX resistance in PCa. Mechanistically, we further confirmed that XPO6 could regulate Hippo pathway via mediating YAP1 protein expression and nuclear translocation thereby promoting PCa progression and chemotherapeutic resistance. CONCLUSION In conclusion, our research reveals that XPO6 potentially function as an oncogene and promotes DTX resistance of PCa, suggesting that XPO6 could be both a potential prognostic marker as well as a therapeutic target to effectively overcome DTX resistance.
Collapse
Affiliation(s)
- Huming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xiangyu Teng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Chao Jiang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, No.678, Furong Road, Shushan District, Hefei, 230601, P.R. China.
| |
Collapse
|
17
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023; 160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | - Tine Deconick
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | | | - Feng Wang
- Karyopharm Therapeutics, Newton, MA 02459, USA
| | | | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium.
| |
Collapse
|
19
|
Wang J, Zhao J, Ma F, Gong L, Lu Y, Xiao W, Tang H, Gao C, Chen Y, Ma J, Gao Z, Yan J, Han S. One Stone, Two Birds: A Peptide-Au(I) Infinite Coordination Supermolecule for the Confederate Physical and Biological Radiosensitization in Cancer Radiation Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204238. [PMID: 36494177 DOI: 10.1002/smll.202204238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Over half of cancer patients are subjected to radiotherapy, but owing to the deficient amount of reactive oxygen radicals (ROS) and DNA double-strand breaks (DSBs), a fair number of them suffer from radiotherapy resistance and the subsequent short-term survival opportunity. To overcome it, many successes have been achieved in radiosensitizer discovery using physical strategy and/or biological strategy, but significant challenges remain regarding developing clinically translational radiosensitizers. Herein, a peptide-Au(I) infinite coordination supermolecule termed PAICS is developed that combined both physical and biological radiosensitization and possessed pharmaceutical characteristics including adequate circulatory stability, controllable drug release, tumor-prioritized accumulation, and the favorable body eliminability. As expected, monovalent gold ion endowed this supermolecule with high X-ray absorption and the subsequent radiosensitization. Furthermore, a peptide targeting CRM1, is assembled into the supermolecule, which successfully activates p53 and apoptosis pathway, thereby further sensitizing radiotherapy. As a result, PAICS showed superior ability for radiotherapy sensitization in vivo and maintained a favorable safety profile. Thus, the PAICS reported here will offer a feasible solution to simultaneously overcome both the pharmaceutical obstacles of physical and biological radiosensitizers and will enable the development of a class of nanomedicines for tumor radiotherapy sensitization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Fang Ma
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Liuyun Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Weiping Xiao
- Department of Neonatology, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hanmin Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chengyi Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yuetong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jun Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Zhan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
20
|
Liu X, Xin Z, Wang K. Patient-derived xenograft model in colorectal cancer basic and translational research. Animal Model Exp Med 2023; 6:26-40. [PMID: 36543756 PMCID: PMC9986239 DOI: 10.1002/ame2.12299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most popular malignancies globally, with 930 000 deaths in 2020. The evaluation of CRC-related pathogenesis and the discovery of potential therapeutic targets will be meaningful and helpful for improving CRC treatment. With huge efforts made in past decades, the systematic treatment regimens have been applied to improve the prognosis of CRC patients. However, the sensitivity of CRC to chemotherapy and targeted therapy is different from person to person, which is an important cause of treatment failure. The emergence of patient-derived xenograft (PDX) models shows great potential to alleviate the straits. PDX models possess similar genetic and pathological characteristics as the features of primary tumors. Moreover, PDX has the ability to mimic the tumor microenvironment of the original tumor. Thus, the PDX model is an important tool to screen precise drugs for individualized treatment, seek predictive biomarkers for prognosis supervision, and evaluate the unknown mechanism in basic research. This paper reviews the recent advances in constructed methods and applications of the CRC PDX model, aiming to provide new knowledge for CRC basic research and therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zechang Xin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Kun Wang
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
21
|
Zhang Y, Lu P, Jin S, Zhang J, Zhou Y. USP14 promotes the malignant progression and ibrutinib resistance of mantle cell lymphoma by stabilizing XPO1. Int J Med Sci 2023; 20:616-626. [PMID: 37082728 PMCID: PMC10110470 DOI: 10.7150/ijms.80467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 04/22/2023] Open
Abstract
Background: Mantle cell lymphoma (MCL) is a heterogeneous disease belonging to non-Hodgkin's lymphoma. In recent years, the morbidity rate of MCL is ascending, and the prognosis remains unfavorable. Ubiquitin-specific proteases14 (USP14) has been evidenced to be engaged in the process of malignant tumors. In this article, the role of USP14 in the malignant process of MCL and the mechanism of ibrutinib resistance were discussed. Methods: Through qRT-PCR and western blot, the mRNA and protein expressions of USP14 in MCL cells were tested. USP14 interference plasmid was constructed by cell transfection technology, and then CCK8 and EdU assays were applied to appraise cell proliferation. Cell cycle and cell apoptosis were estimated by flow cytometry and western blot. The sensitivity of MCL cells to ibrutinib was also investigated. Next, western blot, co-IP, Cycloheximide (CHX) assay and other techniques were used to detect the relationship between USP14 and XPO1. Finally, by simultaneously inhibiting USP14 and overexpressing XPO1, the impacts of USP14 on the malignant process of MCL and the regulatory mechanism of ibrutinib sensitivity in MCL were discussed. Results: USP14 expression was markedly fortified in MCL cell lines. Interference of USP14 suppressed MCL cell viability, potentiated cell cycle arrest, apoptosis, and ibrutinib sensitivity. This process might be achieved by USP14 deubiquitination through enhancing XPO1 stability. Conclusion: USP14 can promote the malignant progression and ibrutinib sensitivity of MCL by stabilizing XPO1.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310016, PR. China
- ✉ Corresponding author: Ye Zhang, No.3 East Qingchun Road, Hangzhou City, Zhejiang Province, 310016, PR. China. E-mail:
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310016, PR. China
| | - Shenhe Jin
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310016, PR. China
| | - Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310016, PR. China
| | - Yan Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310016, PR. China
| |
Collapse
|
22
|
Li K, Wang W. Establishment of m7G-related gene pair signature to predict overall survival in colorectal cancer. Front Genet 2022; 13:981392. [PMID: 36313441 PMCID: PMC9614021 DOI: 10.3389/fgene.2022.981392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background: N7-methylguanosine (m7G) is an emerging research hotspot in the field of RNA methylation, and its role in tumor regulation is becoming increasingly recognized. However, its role in colorectal cancer (CRC) remains unclear. Hence, our study explored the role of m7G in CRC. Methods: The mRNA expression data and the corresponding clinical information of the patients with CRC were obtained from The Cancer Genome Atlas (TCGA). A m7G-related gene pair signature was established using the Cox and LASSO regression analyses. A series of in silico analyses based on the signature included analysis of prognosis, correlation analysis, immune-related analysis, and estimation of tumor mutational burden (TMB), microsatellite instability (MSI), and response to immunotherapy. A nomogram prediction model was then constructed. Results: In total, 2156 m7G-related gene pairs were screened based on 152 m7G-related genes. Then, a prognostic signature of seven gene pairs was constructed, and the patients were stratified into high- or low-risk groups. Better overall survival (OS), left-sided tumor, early stage, immune activity, and low proportion of MSI-low and MSI-high were all associated with a low risk score. High-risk patients had a higher TMB, and patients with a high TMB had a poor OS. Furthermore, the risk score was linked to immune checkpoint expression (including PD-L1), the tumor immune dysfunction and exclusion (TIDE) score, and chemotherapy sensitivity. We also created an accurate nomogram to increase the clinical applicability of the risk score. Conclusion: We identified an m7G pair-based prognostic signature associated with prognosis, immune landscape, immunotherapy, and chemotherapy in CRC. These findings could help us to better understand the role of m7G in CRC, as well as pave the path for novel methods to assess prognosis and design more effective individualized therapeutic strategies.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery Ⅱ, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weixing Wang,
| |
Collapse
|
23
|
Khan HY, Nagasaka M, Li Y, Aboukameel A, Uddin MH, Sexton R, Bannoura S, Mzannar Y, Al-Hallak MN, Kim S, Beydoun R, Landesman Y, Mamdani H, Uprety D, Philip PA, Mohammad RM, Shields AF, Azmi AS. Inhibitor of the Nuclear Transport Protein XPO1 Enhances the Anticancer Efficacy of KRAS G12C Inhibitors in Preclinical Models of KRAS G12C-Mutant Cancers. CANCER RESEARCH COMMUNICATIONS 2022; 2:342-352. [PMID: 35573474 PMCID: PMC9105196 DOI: 10.1158/2767-9764.crc-21-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023]
Abstract
UNLABELLED The identification of molecules that can bind covalently to KRAS G12C and lock it in an inactive GDP-bound conformation has opened the door to targeting KRAS G12C selectively. These agents have shown promise in preclinical tumor models and clinical trials. FDA has recently granted approval to sotorasib for KRAS G12C mutated non-small cell lung cancer (NSCLC). However, patients receiving these agents as monotherapy generally develop drug resistance over time. This necessitates the development of multi-targeted approaches that can potentially sensitize tumors to KRAS inhibitors. We generated KRAS G12C inhibitor-resistant cell lines and observed that they exhibit sensitivity toward selinexor, a selective inhibitor of nuclear export protein exportin1 (XPO1), as a single agent. KRAS G12C inhibitors in combination with selinexor suppressed the proliferation of KRAS G12C mutant cancer cell lines in a synergistic manner. Moreover, combined treatment of selinexor with KRAS G12C inhibitors resulted in enhanced spheroid disintegration, reduction in the number and size of colonies formed by G12C mutant cancer cells. Mechanistically, the combination of selinexor with KRAS G12C inhibitors suppressed cell growth signaling and downregulated the expression of cell cycle markers, KRAS and NF-kB as well as increased nuclear accumulation of tumor suppressor protein Rb. In an in vivo KRAS G12C cell-derived xenograft model, oral administration of a combination of selinexor and sotorasib was demonstrated to reduce tumor burden and enhance survival. In conclusion, we have shown that the nuclear transport protein XPO1 inhibitor can enhance the anticancer activity of KRAS G12C inhibitors in preclinical cancer models. SIGNIFICANCE In this study, combining nuclear transport inhibitor selinexor with KRAS G12C inhibitors has resulted in potent antitumor effects in preclinical cancer models. This can be an effective combination therapy for cancer patients that do not respond or develop resistance to KRAS G12C inhibitor treatment.
Collapse
Affiliation(s)
- Husain Yar Khan
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Misako Nagasaka
- University of California Irvine School of Medicine and Chao Family Comprehensive Cancer Center, Orange, California
- Division of Neurology, Department of Internal Medicine, St. Marianna University, Kawasaki, Japan
| | - Yiwei Li
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amro Aboukameel
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Md. Hafiz Uddin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Rachel Sexton
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sahar Bannoura
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yousef Mzannar
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Najeeb Al-Hallak
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Kim
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Rafic Beydoun
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Hirva Mamdani
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Dipesh Uprety
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Philip A. Philip
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ramzi M. Mohammad
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony F. Shields
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Asfar S. Azmi
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
24
|
Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Dis 2022; 8:235. [PMID: 35487914 PMCID: PMC9055054 DOI: 10.1038/s41420-022-01033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy with multiple drug regimens is the main therapy option for advanced gastric cancer (GC) patients. However, many patients develop relapse soon. Here, we evaluated the therapeutic potential of targeting interleukin-8 (IL8) to overcome resistance to chemotherapy in advanced GC. RNA sequencing revealed crucial molecular changes after chemotherapy resistance, in which the expression of IL8 was significantly activated with the increase in drug resistance. Subsequently, the clinical significance of IL8 expression was determined in GC population specimens. IL8-targeted by RNA interference or reparixin reversed chemotherapy resistance with limited toxicity in vivo and vitro experiments. Sequential treatment with first-line, second-line chemotherapy and reparixin inhibited GC growth, reduced toxicity and prolonged survival. Collectively, our study provides a therapeutic strategy that targeting IL8 as a sequential therapy after chemotherapy resistance in advanced GC.
Collapse
|
25
|
Wang LW, Jiang S, Yuan YH, Duan J, Mao ND, Hui Z, Bai R, Xie T, Ye XY. Recent Advances in Synergistic Antitumor Effects Exploited from the Inhibition of Ataxia Telangiectasia and RAD3-Related Protein Kinase (ATR). Molecules 2022; 27:molecules27082491. [PMID: 35458687 PMCID: PMC9029554 DOI: 10.3390/molecules27082491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
As one of the key phosphatidylinositol 3-kinase-related kinases (PIKKs) family members, ataxia telangiectasia and RAD3-related protein kinase (ATR) is crucial in maintaining mammalian cell genomic integrity in DNA damage response (DDR) and repair pathways. Dysregulation of ATR has been found across different cancer types. In recent years, the inhibition of ATR has been proven to be effective in cancer therapy in preclinical and clinical studies. Importantly, tumor-specific alterations such as ATM loss and Cyclin E1 (CCNE1) amplification are more sensitive to ATR inhibition and are being exploited in synthetic lethality (SL) strategy. Besides SL, synergistic anticancer effects involving ATRi have been reported in an increasing number in recent years. This review focuses on the recent advances in different forms of synergistic antitumor effects, summarizes the pharmacological benefits and ongoing clinical trials behind the biological mechanism, and provides perspectives for future challenges and opportunities. The hope is to draw awareness to the community that targeting ATR should have great potential in developing effective anticancer medicines.
Collapse
Affiliation(s)
- Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jilong Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| |
Collapse
|
26
|
Bin H, Chen P, Wu M, Wang F, Lin G, Pan S, Liu J, Mu B, Nan J, Huang Q, Li L, Yang S. Discovery of a potent and highly selective inhibitor of ataxia telangiectasia mutated and Rad3-Related (ATR) kinase: Structural activity relationship and antitumor activity both in vitro and in vivo. Eur J Med Chem 2022; 232:114187. [DOI: 10.1016/j.ejmech.2022.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
|
27
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Clemons NJ, Phillips WA. Trapping Colorectal Cancer Into a Dead-end. Gastroenterology 2021; 161:33-35. [PMID: 33798528 DOI: 10.1053/j.gastro.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Nicholas J Clemons
- Cancer Research, Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Wayne A Phillips
- Cancer Research, Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Department of Surgery (St. Vincent's Hospital), The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|