1
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
2
|
Shen L, Schaefer A, Huckaby J, Wolf W, Lai SK. Bispecific Siglec-15/T cell antibody (STAB) activates T cells and suppresses pancreatic ductal adenocarcinoma and non-small cell lung tumors in vivo. Theranostics 2025; 15:5529-5542. [PMID: 40365291 PMCID: PMC12068307 DOI: 10.7150/thno.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/09/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Siglec-15 (S15) is a membrane-associated antigen overexpressed across various cancer types, and also induces immunosuppression. We believe this makes S15 a promising target for cellular immunotherapy of solid tumors characterized by an immunosuppressive tumor microenvironment, but this remains underexplored to date. Method: We engineered a bispecific antibody that simultaneously binds S15 on tumor cells and CD3 on T cells in the popular IgG-scFv format; we termed this molecule STAB. Results: In vitro, STAB induced marked proliferation of CD3+ T cells in human PBMCs, and mediated effective killing of Panc-1 pancreatic ductal adenocarcinoma (PDAC) and H460 non-small cell lung cancer (NSCLC) cells in co-culture studies with PBMCs or CD3+ T cells. In NSG mice with human PDAC and NSCLC tumors, STAB effectively suppressed tumor growth and prolonged survival, in sharp contrast to mice receiving either anti-S15 or anti-CD3 mAbs alone. STAB increased activated T cells in both tumor and circulation, as well as reduced the stromal barrier-a key hallmark of PDAC. Conclusion: Our results underscore STAb as a promising therapeutic molecule to be investigated further for PDAC and NSCLC, and potentially other S15-positive solid tumors.
Collapse
MESH Headings
- Animals
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Carcinoma, Pancreatic Ductal/drug therapy
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Mice
- Cell Line, Tumor
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Lectins/immunology
- Lymphocyte Activation/drug effects
- Tumor Microenvironment
- CD3 Complex/immunology
- Xenograft Model Antitumor Assays
- Female
- Membrane Proteins/immunology
- Mice, Inbred NOD
- Immunotherapy/methods
- Immunoglobulins
Collapse
Affiliation(s)
- Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Alison Schaefer
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - Justin Huckaby
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
3
|
Liu H, Chen M, Hong B, Xiao Y, Chen Q, Qian Y. Single-nucleus RNA sequencing and spatial transcriptomics reveal an immunosuppressive tumor microenvironment related to metastatic dissemination during pancreatic cancer liver metastasis. Theranostics 2025; 15:5337-5357. [PMID: 40303346 PMCID: PMC12036881 DOI: 10.7150/thno.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by early liver metastasis and high mortality. The tumor microenvironment plays a pivotal role in tumor progression; however, the immune microenvironment's involvement in PDAC liver metastasis remains poorly understood. Methods: This study investigates cellular heterogeneity in primary tumor (PT) and liver metastasis (LM) tissues of PDAC using single-nucleus RNA sequencing and spatial transcriptomics. Intra-tumor heterogeneity and cell interactions were elucidated through deconvolution, intercellular signalling, pseudotime analysis, and immune infiltration profiling. The spatial distribution of immune cells was assessed by multiplexed immunofluorescence staining, and prognostic models were developed and validated through immunohistochemistry (IHC). Analyzing the regulatory role of CITED4 in the invasion and metastasis of pancreatic cancer cells through transwell assay and scratch wound healing assay. Results: A total of 62,326 cells were sequenced, with metastatic dissemination cells showing significant upregulation of epithelial-mesenchymal transition (EMT)-related genes during liver metastasis. Spatial transcriptomics revealed the enrichment of metastatic dissemination cells and FOXP3-related Treg cells at the tumor front in PT tissues. In comparison to LM tissues, the tumor front in PT tissues fosters an immunosuppressive microenvironment through the accumulation of Treg cells. Interaction analysis identified the SPP1 pathway as a key promoter of this immunosuppressive environment. Furthermore, prognostic models highlighted CITED4 as critical biomarkers in PDAC. Elevated CITED4 expression is correlated with liver metastasis and poor prognosis in patients with PDAC. siRNA-mediated knockdown of CITED4 suppresses the invasion and metastasis of pancreatic cancer cells. Conclusions: In summary, this study revealed that Treg cell alterations, mediated by metastatic dissemination cells within the immune microenvironment, significantly contribute to PDAC liver metastasis, and that CITED4 enhances the metastatic potential of metastatic dissemination cells.
Collapse
Affiliation(s)
- Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
4
|
Dai S, Peng Y, Wang G, Chen C, Chen Q, Yin L, Yan H, Zhang K, Tu M, Lu Z, Wei J, Li Q, Wu J, Jiang K, Zhu Y, Miao Y. LIM domain only 7: a novel driver of immune evasion through regulatory T cell differentiation and chemotaxis in pancreatic ductal adenocarcinoma. Cell Death Differ 2025; 32:271-290. [PMID: 39143228 PMCID: PMC11803110 DOI: 10.1038/s41418-024-01358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
With advancements in genomics and immunology, immunotherapy has emerged as a revolutionary strategy for tumor treatment. However, pancreatic ductal adenocarcinoma (PDAC), an immunologically "cold" tumor, exhibits limited responsiveness to immunotherapy. This study aimed to address the urgent need to uncover PDAC's immune microenvironment heterogeneity and identify the molecular mechanisms driving immune evasion. Using single-cell RNA sequencing datasets and spatial proteomics, we discovered LIM domain only 7 (LMO7) in PDAC cells as a previously unrecognized driver of immune evasion through Treg cell enrichment. LMO7 was positively correlated with infiltrating regulatory T cells (Tregs) and dysfunctional CD8+ T cells. A series of in vitro and in vivo experiments demonstrated LMO7's significant role in promoting Treg cell differentiation and chemotaxis while inhibiting CD8+ T cells and natural killer cell cytotoxicity. Mechanistically, LMO7, through its LIM domain, directly bound and promoted the ubiquitination and degradation of Foxp1. Foxp1 negatively regulated transforming growth factor-beta (TGF-β) and C-C motif chemokine ligand 5 (CCL5) expression by binding to sites 2 and I/III, respectively. Elevated TGF-β and CCL5 levels contribute to Treg cell enrichment, inducing immune evasion in PDAC. Combined treatment with TGF-β/CCL5 antibodies, along with LMO7 inhibition, effectively reversed immune evasion in PDAC, activated the immune response, and prolonged mouse survival. Therefore, this study identified LMO7 as a novel facilitator in driving immune evasion by promoting Treg cell enrichment and inhibiting cytotoxic effector functions. Targeting the LMO7-Foxp1-TGF-β/CCL5 axis holds promise as a therapeutic strategy for PDAC. Graphical abstract revealing LMO7 as a novel facilitator in driving immune evasion by promoting Tregs differentiation and chemotaxis, inducing CD8+ T/natural killer cells inhibition.
Collapse
Affiliation(s)
- Shangnan Dai
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yunpeng Peng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Guangfu Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Chongfa Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Lingdi Yin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Han Yan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Qiang Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Junli Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China
| | - Yi Zhu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Institute, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, PR China.
- Pancreas Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Bruciamacchie M, Garambois V, Vie N, Bessede T, Michaud HA, Chepeaux LA, Gros L, Bonnefoy N, Robin M, Brager D, Bigot K, Evrard A, Pourquier P, Colinge J, Mathonnet M, Belhabib I, Jean C, Bousquet C, Colombo PE, Jarlier M, Tosi D, Gongora C, Larbouret C. ATR inhibition potentiates FOLFIRINOX cytotoxic effect in models of pancreatic ductal adenocarcinoma by remodelling the tumour microenvironment. Br J Cancer 2025; 132:222-235. [PMID: 39613844 PMCID: PMC11746931 DOI: 10.1038/s41416-024-02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND In pancreatic ductal adenocarcinoma (PDAC), the dense stroma rich in cancer-associated fibroblasts (CAFs) and the immunosuppressive microenvironment confer resistance to treatments. To overcome such resistance, we tested the combination of FOLFIRINOX (DNA damage-inducing chemotherapy drugs) with VE-822 (an ataxia-telangiectasia and RAD3-related inhibitor that targets DNA damage repair). METHODS PDAC spheroid models and organoids were used to assess the combination effects. Tumour growth and the immune and fibrotic microenvironment were evaluated by immunohistochemistry, single-cell analysis and spatial proteomics in patient-derived xenograft (PDX) and orthotopic immunocompetent KPC mouse models. RESULTS The FOLFIRINOX and VE-822 combination had a strong synergistic effect in several PDAC cell lines, whatever their BRCA1, BRCA2 and ATM mutation status and resistance to standard chemotherapy agents. This was associated with high DNA damage and inhibition of DNA repair signalling pathways, leading to increased apoptosis. In immunocompetent and PDX mouse models of PDAC, the combination inhibited tumour growth more effectively than FOLFIRINOX alone. This was associated with tumour microenvironment remodelling, particularly decreased proportion of fibroblast activated protein-positive CAFs and increased anti-tumorigenic immune cell infiltration and interaction. CONCLUSION The FOLFIRINOX and VE-822 combination is a promising strategy to improve FOLFIRINOX efficacy and overcome drug resistance in PDAC.
Collapse
Affiliation(s)
| | | | - Nadia Vie
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Thomas Bessede
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | | | - Laurent Gros
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Mathilde Robin
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Dorian Brager
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Kevin Bigot
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Alexandre Evrard
- IRCM, Univ Montpellier, Inserm, ICM, CHU Nimes, Montpellier, France
| | | | | | | | - Ismahane Belhabib
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Christine Jean
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Corinne Bousquet
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | | | - Marta Jarlier
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Diégo Tosi
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France
| | | |
Collapse
|
6
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
7
|
Zhou T, Hou X, Yan J, Li L, Xie Y, Bai W, Jiang W, Zou Y, Li X, Liu Z, Zhang Z, Xu B, Mao G, Wang Y, Gao S, Wang X, Zhao T, Wang H, Sun H, Zhang X, Yu J, Huang C, Liu J, Hao J. CD64 + fibroblast-targeted vilanterol and a STING agonist augment CLDN18.2 BiTEs efficacy against pancreatic cancer by reducing desmoplasia and enriching stem-like CD8 + T cells. Gut 2024; 73:1984-1998. [PMID: 39187291 DOI: 10.1136/gutjnl-2024-332371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The objective of this study is to improve the efficacy of CLDN18.2/CD3 bispecific T-cell engagers (BiTEs) as a promising immunotherapy against pancreatic ductal adenocarcinoma (PDAC). DESIGN Humanised hCD34+/hCD3e+, Trp53R172HKrasG12DPdx1-Cre (KPC), pancreas-specific Cldn18.2 knockout (KO), fibroblast-specific Fcgr1 KO and patient-derived xenograft/organoid mouse models were constructed. Flow cytometry, Masson staining, Cell Titer Glo assay, virtual drug screening, molecular docking and chromatin immunoprecipitation were conducted. RESULTS CLDN18.2 BiTEs effectively inhibited early tumour growth, but late-stage efficacy was significantly diminished. Mechanically, the Fc fragment of BiTEs interacted with CD64+ cancer-associated fibroblasts (CAFs) via activation of the SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A-α-SMA/collagen-I pathway, which enhanced desmoplasia and limited late-stage infiltration of T cells. Molecular docking analysis found that vilanterol suppressed BiTEs-induced phosphorylation of VAV2 (Y172) in CD64+ CAFs and weakened desmoplasia. Additionally, decreased cyclic guanosine-adenosine monophosphate synthase/stimulator of interferon genes (STING) activity reduced proliferation of TCF-1+PD-1+ stem-like CD8+ T cells, which limited late-stage effects of BiTEs. Finally, vilanterol and the STING agonist synergistically boosted the efficacy of BiTEs by inhibiting the activation of CD64+ CAFs and enriching proliferation of stem-like CD8+ T cells, resulting in sustained anti-tumour activity. CONCLUSION Vilanterol plus the STING agonist sensitised PDAC to CLDN18.2 BiTEs and augmented efficacy as a potential novel strategy.
Collapse
Affiliation(s)
- Tianxing Zhou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xupeng Hou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jingrui Yan
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lin Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yongjie Xie
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Weiwei Bai
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yiping Zou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xueyang Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Ziyun Liu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Bohang Xu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Guohua Mao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Song Gao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xiuchao Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongwei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongxia Sun
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jun Yu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chongbiao Huang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Jing Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Katoh M, Katoh M. Claudin 1, 4, 6 and 18 isoform 2 as targets for the treatment of cancer (Review). Int J Mol Med 2024; 54:100. [PMID: 39301632 DOI: 10.3892/ijmm.2024.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The 24 claudin (CLDN) genes in the human genome encode 26 representative CLDN family proteins. CLDNs are tetraspan‑transmembrane proteins at tight junctions. Because several CLDN isoforms, such as CLDN6 and CLDN18.2, are specifically upregulated in human cancer, CLDN‑targeting monoclonal antibodies (mAbs), antibody‑drug conjugates (ADCs), bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells have been developed. In the present review, CLDN1‑, 4‑, 6‑ and 18.2‑targeting investigational drugs in clinical trials are discussed. CLDN18.2‑directed therapy for patients with gastric and other types of cancer is the most advanced area in this field. The mouse/human chimeric anti‑CLDN18.2 mAb zolbetuximab has a single‑agent objective response rate (ORR) of 9%, and increases progression‑free and overall survival in combination with chemotherapy. The human/humanized anti‑CLDN18.2 mAb osemitamab, and ADCs AZD0901, IBI343 and LM‑302, with single‑agent ORRs of 28‑60%, have been tested in phase III clinical trials. In addition, bsAbs, CAR T cells and their derivatives targeting CLDN4, 6 or 18.2 are in phase I and/or II clinical trials. AZD0901, IBI343, zolbetuximab and the anti‑CLDN1 mAb ALE.C04 have been granted fast track designation or priority review designation by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Masuko Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| | - Masaru Katoh
- Department of Global Network, M & M Precision Medicine, Tokyo 113‑0033, Japan
| |
Collapse
|
9
|
Wu J, Lu J, Chen Q, Chen H, Zheng Y, Cheng M. Pan-cancer analysis of CLDN18.2 shed new insights on the targeted therapy of upper gastrointestinal tract cancers. Front Pharmacol 2024; 15:1494131. [PMID: 39555091 PMCID: PMC11563798 DOI: 10.3389/fphar.2024.1494131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background CLDN18.2 is a widely researched drug target. However, previous research has primarily been based on immunohistochemistry results and focused on gastric cancer. Methods To analyze the potential cancer-targeting effect of CLDN18.2 from a multi-omics perspective, this study quantified CLDN18.2 expression in The Cancer Genome Atlas (TCGA) pan-cancer cohort. Thus, the relationships between CLDN18.2 expression and genomic alterations, immune infiltration, and prognosis were analyzed. Additionally, we performed analyses of the differentially expressed genes and enriched pathways between the high- and low-CLDN18.2 expression groups, as well as the corresponding drug sensitivity analyses. Results The results indicated that CLDN18.2 was highly expressed in pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD), colorectal cancer (CRC), and esophageal carcinoma (ESCA). Moreover, the high- and low-CLDN18.2 expression groups presented significant differences in terms of genomic alterations and immune infiltration, such as the levels of methylation and CD4+ T cell infiltration. Furthermore, high CLDN18.2 expression was significantly associated with poor prognosis in bladder urothelial carcinoma (BLCA), ESCA, and PAAD. In upper gastrointestinal tract cancers (STAD, ESCA, and PAAD), downregulated gene-enriched pathways were associated with cell signaling, whereas upregulated gene-enriched pathways were associated with angiogenesis. Finally, we identified drugs associated with CLDN18.2 expression to which samples with different levels of expression were differentially sensitive. Conclusion CLDN18.2 was highly expressed in upper gastrointestinal tract cancers, and its expression had a significant effect on genomic alterations and the tumor microenvironment. Additionally, low CLDN18.2 expression was linked to favorable prognosis. Our study reveals the potential value of CLDN18.2 for tumor prognosis and targeted therapy in various cancers, especially upper gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Jun Wu
- Department of Clinical Laboratory, People's Hospital of Bao'an District, Shenzhen Baoan Clinical Medical College of Guangdong Medical University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinghua Lu
- Department of Clinical Laboratory, People's Hospital of Bao'an District, Shenzhen Baoan Clinical Medical College of Guangdong Medical University, Shenzhen, China
| | - Qiuyue Chen
- Department of Clinical Laboratory, People's Hospital of Bao'an District, Shenzhen Baoan Clinical Medical College of Guangdong Medical University, Shenzhen, China
| | - Haojie Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongqiang Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Minggang Cheng
- Department of Clinical Laboratory, People's Hospital of Bao'an District, Shenzhen Baoan Clinical Medical College of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
10
|
Ma Z, Zhou Z, Duan W, Yao G, Sheng S, Zong S, Zhang X, Li C, Liu Y, Ou F, Dahar MR, Huang Y, Yu L. DR30318, a novel tri-specific T cell engager for Claudin 18.2 positive cancers immunotherapy. Cancer Immunol Immunother 2024; 73:82. [PMID: 38554200 PMCID: PMC10981630 DOI: 10.1007/s00262-024-03673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Claudin 18.2 (CLDN18.2) is a highly anticipated target for solid tumor therapy, especially in advanced gastric carcinoma and pancreatic carcinoma. The T cell engager targeting CLDN18.2 represents a compelling strategy for enhancing anti-cancer efficacy. METHODS Based on the in-house screened anti-CLDN18.2 VHH, we have developed a novel tri-specific T cell engager targeting CLDN18.2 for gastric and pancreatic cancer immunotherapy. This tri-specific antibody was designed with binding to CLDN18.2, human serum albumin (HSA) and CD3 on T cells. RESULTS The DR30318 demonstrated binding affinity to CLDN18.2, HSA and CD3, and exhibited T cell-dependent cellular cytotoxicity (TDCC) activity in vitro. Pharmacokinetic analysis revealed a half-life of 22.2-28.6 h in rodents and 41.8 h in cynomolgus monkeys, respectively. The administration of DR30318 resulted in a slight increase in the levels of IL-6 and C-reactive protein (CRP) in cynomolgus monkeys. Furthermore, after incubation with human PBMCs and CLDN18.2 expressing cells, DR30318 induced TDCC activity and the production of interleukin-6 (IL-6) and interferon-gamma (IFN-γ). Notably, DR30318 demonstrated significant tumor suppression effects on gastric cancer xenograft models NUGC4/hCLDN18.2 and pancreatic cancer xenograft model BxPC3/hCLDN18.2 without affecting the body weight of mice.
Collapse
Affiliation(s)
- Zhe Ma
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Gaofeng Yao
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Sidou Zong
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Xin Zhang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Changkui Li
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Yuanyuan Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China
| | - Fengting Ou
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China
| | - Maha Raja Dahar
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, 310058, Zhejiang Province, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321036, China.
- Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China.
| |
Collapse
|
11
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
12
|
Das G, Ptacek J, Havlinova B, Nedvedova J, Barinka C, Novakova Z. Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen. ACS Pharmacol Transl Sci 2023; 6:1703-1714. [PMID: 37974624 PMCID: PMC10644396 DOI: 10.1021/acsptsci.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 11/19/2023]
Abstract
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated in vitro using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Barbora Havlinova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Jana Nedvedova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Cyril Barinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Zora Novakova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| |
Collapse
|