1
|
Oh C, Lee S, Oh P, Chung W, Ko Y, Yoon SH, Kim YH, Ji SM, Hong B. Comparison between Fourth-Generation FloTrac/Vigileo System and Continuous Thermodilution Technique for Cardiac Output Estimation after Time Adjustment during Off-Pump Coronary Artery Bypass Graft Surgery: A Retrospective Cohort Study. J Clin Med 2022; 11:jcm11206093. [PMID: 36294414 PMCID: PMC9605331 DOI: 10.3390/jcm11206093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Previous studies reported limited performance of arterial pressure waveform-based cardiac output (CO) estimation (FloTrac/Vigileo system; CO-FloTrac) compared with the intermittent thermodilution technique (COint). However, errors due to bolus maneuver and intermittent measurements of COint could limit its use as a reference. The continuous thermodilution technique (COcont) may relieve such limitations. (2) Methods: The performance of CO-FloTrac was retrospectively assessed using continuous recordings of intraoperative physiological data acquired from patients who underwent off-pump coronary artery bypass graft (OPCAB) surgery with CO monitoring using both CO-FloTrac and COcont. Optimal time adjustments between the two measurements were determined based on R-squared values. (3) Results: A total of 134.2 h of data from 30 patients was included in the final analysis. The mean bias was -0.94 (95% CI, -1.35 to -0.52) L/min and the limits of agreements were -3.64 (95% CI, -4.44 to -3.08) L/min and 1.77 (95% CI, 1.21 to 2.57) L/min. The percentage error was 66.1% (95% CI, 52.4 to 85.8%). Depending on the time scale and the size of the exclusion zone, concordance rates ranged from 61.0% to 75.0%. (4) Conclusion: Despite the time adjustments, CO-FloTrac showed non-negligible overestimation, clinically unacceptable precision, and poor trending ability during OPCAB surgery.
Collapse
Affiliation(s)
- Chahyun Oh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soomin Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Pyeonghwa Oh
- Department of Anesthesiology and Pain Medicine, Dankook University Hospital, Cheonan 31116, Korea
| | - Woosuk Chung
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Youngkwon Ko
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seok-Hwa Yoon
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Yoon-Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Mi Ji
- Department of Anesthesiology and Pain Medicine, Dankook University Hospital, Cheonan 31116, Korea
- Correspondence: (S.-M.J.); (B.H.)
| | - Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea
- Big Data Center, Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Korea
- Correspondence: (S.-M.J.); (B.H.)
| |
Collapse
|
2
|
Kobe J, Mishra N, Arya VK, Al-Moustadi W, Nates W, Kumar B. Cardiac output monitoring: Technology and choice. Ann Card Anaesth 2020; 22:6-17. [PMID: 30648673 PMCID: PMC6350438 DOI: 10.4103/aca.aca_41_18] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The accurate quantification of cardiac output (CO) is given vital importance in modern medical practice, especially in high-risk surgical and critically ill patients. CO monitoring together with perioperative protocols to guide intravenous fluid therapy and inotropic support with the aim of improving CO and oxygen delivery has shown to improve perioperative outcomes in high-risk surgical patients. Understanding of the underlying principles of CO measuring devices helps in knowing the limitations of their use and allows more effective and safer utilization. At present, no single CO monitoring device can meet all the clinical requirements considering the limitations of diverse CO monitoring techniques. The evidence for the minimally invasive CO monitoring is conflicting; however, different CO monitoring devices may be used during the clinical course of patients as an integrated approach based on their invasiveness and the need for additional hemodynamic data. These devices add numerical trend information for anesthesiologists and intensivists to use in determining the most appropriate management of their patients and at present, do not completely prohibit but do increasingly limit the use of the pulmonary artery catheter.
Collapse
Affiliation(s)
- Jeff Kobe
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Nitasha Mishra
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra K Arya
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Waiel Al-Moustadi
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Wayne Nates
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Bhupesh Kumar
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
|
4
|
Thiele RH, Bartels K, Gan TJ. Inter-device differences in monitoring for goal-directed fluid therapy. Can J Anaesth 2014; 62:169-81. [PMID: 25391734 DOI: 10.1007/s12630-014-0265-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/24/2014] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. PRINCIPAL FINDINGS The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. CONCLUSIONS The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.
Collapse
Affiliation(s)
- Robert H Thiele
- Technology in Anesthesia & Critical Care Group, Divisions of Cardiac, Thoracic, and Critical Care Anesthesiology, Departments of Anesthesiology and Biomedical Engineering, University of Virginia School of Medicine, P.O. Box 800710-0710, Charlottesville, VA, 22908-0710, USA,
| | | | | |
Collapse
|
5
|
Suehiro K, Tanaka K, Matsuura T, Funao T, Yamada T, Mori T, Nishikawa K. The Vigileo-FloTracTM System: Arterial Waveform Analysis for Measuring Cardiac Output and Predicting Fluid Responsiveness: A Clinical Review. J Cardiothorac Vasc Anesth 2014; 28:1361-74. [DOI: 10.1053/j.jvca.2014.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Indexed: 02/03/2023]
|
6
|
Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth 2014; 61:452-79. [PMID: 24643474 DOI: 10.1007/s12630-014-0135-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The aim of this review was to provide a meta-analysis of all five of the most popular systems for arterial pulse contour analysis compared with pulmonary artery thermodilution, the established reference method for measuring cardiac output (CO). The five investigated systems are FloTrac/Vigileo(®), PiCCO(®), LiDCO/PulseCO(®), PRAM/MostCare(®), and Modelflow. SOURCE In a comprehensive literature search through MEDLINE(®), Web of Knowledge (v.5.11), and Google Scholar, we identified prospective studies and reviews that compared the pulse contour approach with the reference method (n = 316). Data extracted from the 93 selected studies included range and mean cardiac output, bias, percentage error, software versions, and study population. We performed a pooled weighted analysis of their precision in determining CO in various patient groups and clinical settings. PRINCIPAL FINDINGS Results of the majority of studies indicate that the five investigated systems show acceptable accuracy during hemodynamically stable conditions. Forty-three studies provided adequate data for a pooled weighted analysis and resulted in a mean (SD) total pooled bias of -0.28 (1.25) L·min(-1), percentage error of 40%, and a correlation coefficient of r = 0.71. In hemodynamically unstable patients (n = 8), we found a higher percentage error (45%) and bias of -0.54 (1.64) L·min(-1). CONCLUSION During hemodynamic instability, CO measurement based on continuous arterial pulse contour analysis shows only limited agreement with intermittent bolus thermodilution. The calibrated systems seem to deliver more accurate measurements than the auto-calibrated or the non-calibrated systems. For reliable use of these semi-invasive systems, especially for critical therapeutic decisions during hemodynamic disorders, both a strategy for hemodynamic optimization and further technological improvements are necessary.
Collapse
|
7
|
Shanks J, Herring N. Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1411-20. [PMID: 24005254 PMCID: PMC3882692 DOI: 10.1152/ajpregu.00118.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/20/2013] [Indexed: 02/08/2023]
Abstract
High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome.
Collapse
Affiliation(s)
- Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Chamos C, Vele L, Hamilton M, Cecconi M. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization. Perioper Med (Lond) 2013; 2:19. [PMID: 24472443 PMCID: PMC3964331 DOI: 10.1186/2047-0525-2-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 01/20/2023] Open
Abstract
The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made.
Collapse
Affiliation(s)
- Christos Chamos
- Senior clinical fellow in cardiac anaesthesia, St George's Healthcare NHS Trust, London, UK.
| | | | | | | |
Collapse
|
9
|
Evaluation of a model-based hemodynamic monitoring method in a porcine study of septic shock. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:505417. [PMID: 23585774 PMCID: PMC3621159 DOI: 10.1155/2013/505417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The accuracy and clinical applicability of an improved model-based system for tracking hemodynamic changes is assessed in an animal study on septic shock. METHODS This study used cardiovascular measurements recorded during a porcine trial studying the efficacy of large-pore hemofiltration for treating septic shock. Four Pietrain pigs were instrumented and induced with septic shock. A subset of the measured data, representing clinically available measurements, was used to identify subject-specific cardiovascular models. These models were then validated against the remaining measurements. RESULTS The system accurately matched independent measures of left and right ventricle end diastolic volumes and maximum left and right ventricular pressures to percentage errors less than 20% (except for the 95th percentile error in maximum right ventricular pressure) and all R(2) > 0.76. An average decrease of 42% in systemic resistance, a main cardiovascular consequence of septic shock, was observed 120 minutes after the infusion of the endotoxin, consistent with experimentally measured trends. Moreover, modelled temporal trends in right ventricular end systolic elastance and afterload tracked changes in corresponding experimentally derived metrics. CONCLUSIONS These results demonstrate that this model-based method can monitor disease-dependent changes in preload, afterload, and contractility in porcine study of septic shock.
Collapse
|
10
|
Ishihara H, Sugo Y, Tsutsui M, Yamada T, Sato T, Akazawa T, Sato N, Yamashita K, Takeda J. The ability of a new continuous cardiac output monitor to measure trends in cardiac output following implementation of a patient information calibration and an automated exclusion algorithm. J Clin Monit Comput 2012; 26:465-71. [PMID: 22854918 PMCID: PMC3494869 DOI: 10.1007/s10877-012-9384-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/17/2012] [Indexed: 10/30/2022]
Abstract
A new non-invasive continuous cardiac output (esCCO) monitoring system solely utilizing a routine cardiovascular monitor was developed, even though a reference cardiac output (CO) is consistently required. Subsequently, a non-invasive patient information CO calibration together with a new automated exclusion algorithm was implemented in the esCCO system. We evaluated the accuracy and trending ability of the new esCCO system. Either operative or postoperative data of a multicenter study in Japan for evaluation of the accuracy of the original version of esCCO system were used to develop the new esCCO system. A total of 207 patients, mostly cardiac surgical patients, were enrolled in the study. Data were manually reviewed to formulate a new automated exclusion algorithm with enhanced accuracy. Then, a new esCCO system based on a patient information calibration together with the automated exclusion algorithm was developed. CO measured with a new esCCO system was compared with the corresponding intermittent bolus thermodilution CO (ICO) utilizing statistical methods including polar plots analysis. A total of 465 sets of CO data obtained using the new esCCO system were evaluated. The difference in the CO value between the new esCCO and ICO was 0.34 ± 1.50 (SD) L/min (95 % confidence limits of -2.60 to 3.28 L/min). The percentage error was 69.6 %. Polar plots analysis showed that the mean polar angle was -1.6° and radial limits of agreement were ±53.3°. This study demonstrates that the patient information calibration is clinically useful as ICO, but trending ability of the new esCCO system is not clinically acceptable as judged by percentage error and polar plots analysis, even though it's trending ability is comparable with currently available arterial waveform analysis methods.
Collapse
Affiliation(s)
- Hironori Ishihara
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki-Shi 036-8562, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Park SY, Kim DH, Joe HB, Yoo JY, Kim JS, Kang M, Hong YW. Accuracy of cardiac output measurements during off-pump coronary artery bypass grafting: according to the vessel anastomosis sites. Korean J Anesthesiol 2012; 62:423-8. [PMID: 22679538 PMCID: PMC3366308 DOI: 10.4097/kjae.2012.62.5.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/24/2022] Open
Abstract
Background During beating heart surgery, the accuracy of cardiac output (CO) measurement techniques may be influenced by several factors. This study was conducted to analyze the clinical agreement among stat CO mode (SCO), continuous CO mode (CCO), arterial pressure waveform-based CO estimation (APCO), and transesophageal Doppler ultrasound technique (UCCO) according to the vessel anastomosis sites. Methods This study was prospectively performed in 25 patients who would be undergoing elective OPCAB. Hemodynamic variables were recorded at the following time points: during left anterior descending (LAD) anastomosis at 1 min and 5 min; during obtuse marginal (OM) anastomosis at 1 min and 5 min: and during right coronary artery (RCA) anastomosis at 1 min and 5 min. The variables measured including the SCO, CCO, APCO, and UCCO. Results CO measurement techniques showed different correlations according to vessel anastomosis site. However, the percent error observed was higher than the value of 30% postulated by the criteria of Critchley and Critchley during all study periods for all CO measurement techniques. Conclusions In the beating heart procedure, SCO, CCO and APCO showed different correlations according to the vessel anastomosis sites and did not agree with UCCO. CO values from the various measurement techniques should be interpreted with caution during OPCAB.
Collapse
Affiliation(s)
- Sung Yong Park
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Current World Literature. Curr Opin Anaesthesiol 2012; 25:111-20. [DOI: 10.1097/aco.0b013e32834fd93c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Current World Literature. Curr Opin Anaesthesiol 2011; 24:705-12. [DOI: 10.1097/aco.0b013e32834e25f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
|