1
|
Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi RR, Horton M, Xoconostle R, Wang B, Lancaster C, Kristopeit A, Wang SC, Christanti S, Vitelli S, Gentile MP, Goerke A, Skinner J, Strable E, Thiriot DS, Bodmer JL, Heinrichs JH. Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One 2017; 12:e0170640. [PMID: 28125650 PMCID: PMC5268477 DOI: 10.1371/journal.pone.0170640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.
Collapse
Affiliation(s)
- Susan Secore
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Su Wang
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Doughtry
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jinfu Xie
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Matt Miezeiewski
- Eurofins Laboratories, Lancaster, Pennsylvania, United States of America
| | - Richard R. Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Melanie Horton
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Rachel Xoconostle
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Bei Wang
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Catherine Lancaster
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Adam Kristopeit
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sianny Christanti
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Salvatore Vitelli
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Marie-Pierre Gentile
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Aaron Goerke
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Skinner
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Erica Strable
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - David S. Thiriot
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jean-Luc Bodmer
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jon H. Heinrichs
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| |
Collapse
|