1
|
Shahzad K, Majid ASA, Khan M, Iqbal MA, Ali A. Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Technetium radionuclide (99mTc) has excellent extent of disintegration properties and occupies a special place in the field of nuclear medicinal chemistry and other health disciplines. Current review describes recent approaches of synthesis in detailed ways for radio-pharmaceuticals of technetium which have been developed to treat and diagnose the biotic disorders. These technetium labeled radio-pharmaceuticals have been established to apply in the field of diagnostic nuclear medicine especially for imaging of different body parts such as brain, heart, kidney, bones and so on, through single photon emission computed tomography (SPECT) that is thought to be difficult to image such organs by using common X-ray and MRI (Magnetic Resonance Imaging) techniques. This review highlights and accounts an inclusive study on the various synthetic routes of technetium labeled radio-pharmaceuticals using ligands with various donor atoms such as carbon, nitrogen, sulphur, phosphorus etc. These compounds can be utilized as next generation radio-pharmaceuticals.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | | | - Mumtaz Khan
- Health Physics Division, Pakistan Institute of Nuclear Science and Technology , Islamabad , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Asjad Ali
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
2
|
Hajhosseiny R, Prieto C, Qi H, Phinikaridou A, Botnar RM. Thrombosis and Embolism. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019; 16:729-745. [PMID: 31243334 DOI: 10.1038/s41571-019-0238-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
|
4
|
Schreuder N, Koopman D, Jager PL, Kosterink JGW, van Puijenbroek E. Adverse Events of Diagnostic Radiopharmaceuticals: A Systematic Review. Semin Nucl Med 2019; 49:382-410. [PMID: 31470933 DOI: 10.1053/j.semnuclmed.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diagnostic radiopharmaceuticals used in nuclear medicine can cause adverse events. Information on these adverse events is available in case reports and databases but may not be readily accessible to healthcare professionals. This systematic review provides an overview of adverse events of diagnostical radiopharmaceuticals and their characteristics. A median frequency for adverse events in diagnostical radiopharmaceuticals of 1.63 (interquartile range: 1.09-2.29) per 100,000 is reported. Most common are skin and subcutaneous tissue disorders, and general disorders and administration site conditions. Many adverse events reported are minor in severity, although 6.7% can be classified as important. In rare cases, adverse events are serious and potentially life-threatening. With the introduction of new radiopharmaceuticals and the increasing use of positron emission tomography-computed tomography, previously unknown adverse events may be detected in daily practice. Future work should cover the experience of the patient with adverse events from diagnostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Nanno Schreuder
- Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology & Economics, University of Groningen, Groningen, the Netherlands; GE Healthcare Radiopharmacy Zwolle, Zwolle, the Netherlands.
| | - Daniëlle Koopman
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Pieter L Jager
- Department of Nuclear Medicine, Isala Hospital, Zwolle, the Netherlands
| | - Jos G W Kosterink
- Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology & Economics, University of Groningen, Groningen, the Netherlands; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eugène van Puijenbroek
- Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology & Economics, University of Groningen, Groningen, the Netherlands; Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, the Netherlands
| |
Collapse
|
5
|
Dong P, Wang X, Zheng J, Zhang X, Li Y, Wu H, Li L. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr Med Chem 2019; 27:3924-3943. [PMID: 31267851 DOI: 10.2174/1386207322666190702105829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyi Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Khalil A, Ng SC, Liew YM, Lai KW. An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment. Cardiol Res Pract 2018; 2018:1437125. [PMID: 30159169 PMCID: PMC6109558 DOI: 10.1155/2018/1437125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Image registration has been used for a wide variety of tasks within cardiovascular imaging. This study aims to provide an overview of the existing image registration methods to assist researchers and impart valuable resource for studying the existing methods or developing new methods and evaluation strategies for cardiac image registration. For the cardiac diagnosis and treatment strategy, image registration and fusion can provide complementary information to the physician by using the integrated image from these two modalities. This review also contains a description of various imaging techniques to provide an appreciation of the problems associated with implementing image registration, particularly for cardiac pathology intervention and treatments.
Collapse
Affiliation(s)
- Azira Khalil
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Faculty of Science and Technology, Islamic Science University of Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Siew-Cheok Ng
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 725] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
8
|
Abstract
The development of new methods to image the onset and progression of thrombosis is an unmet need. Non-invasive molecular imaging techniques targeting specific key structures involved in the formation of thrombosis have demonstrated the ability to detect thrombus in different disease state models and in patients. Due to its high concentration in the thrombus and its essential role in thrombus formation, the detection of fibrin is an attractive strategy for identification of thrombosis. Herein we provide an overview of recent and selected fibrin-targeted probes for molecular imaging of thrombosis by magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical techniques. Emphasis is placed on work that our lab has explored over the last 15 years that has resulted in the progression of the fibrin-binding PET probe [64Cu]FBP8 from preclinical studies into human trials.
Collapse
Affiliation(s)
- Bruno L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | | |
Collapse
|
9
|
Tamburello A, Treglia G, Albano D, Bertagna F, Giovanella L. Prevalence and clinical significance of focal incidental 18F-FDG uptake in different organs: an evidence-based summary. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0253-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Abstract
Approximately 30 years ago, it has been suggested that chlorhexidine, which is used as antiseptic, can produce Tc colloid complex during Tc-dimercaptosuccinic acid (DMSA) preparation. However, in all cases of liver and spleen uptake in Tc-DMSA scan, it should still be kept in mind because of the introduction of new antiseptic brands with different formulation under various names. Our case is just a sample of this effect, which resulted from application of a new brand of antiseptic by technologists in our center that unintentionally led to low-quality Tc-DMSA scans for a period, and after restrict control of all other confounding factors in the preparation of kit, it was just resolved by changing antiseptic to ethanol.
Collapse
|