1
|
Yan B, Jiang Y, Fu S, Li R. PMILACG Model: A Predictive Model for Identifying Invasiveness of Lung Adenocarcinoma Based on High-Resolution CT-Determined Ground Glass Nodule Features. TOHOKU J EXP MED 2025; 265:13-20. [PMID: 39198147 DOI: 10.1620/tjem.2024.j078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
The morphology of ground-glass nodule (GGN) under high-resolution computed tomography (HRCT) has been suggested to indicate different histological subtypes of lung adenocarcinoma (LUAD); however, existing studies only include the limited number of GGN characteristics, which lacks a systematic model for predicting invasive LUAD. This study aimed to construct a predictive model based on GGN features under HRCT for LUAD. A total of 1,189 surgical LUAD patients were enrolled, and their GGN-related features were assessed by 2 individual radiologists. The pathological diagnosis of the invasive LUAD was established by pathologic examination following surgery (including 1,073 invasive and 526 non-invasive LUAD). After adjustment by multivariate logistic regression, GGN diameter (OR = 1.382, 95% CI: 1.300-1.469), mean CT attenuation (OR = 1.007, 95% CI: 1.006-1.009), heterogeneous uniformity of density (OR = 2.151, 95% CI: 1.587-2.915), not defined nodule-lung interface (OR = 1.915, 95% CI: 1.384-2.651), GGN with spiculation (OR = 2.097, 95% CI: 1.519-2.896), type I (OR = 1.678, 95% CI: 1.216-2.371), and type II (OR = 3.577, 95% CI: 1.153-11.097) vessel changes were independent risk factors for invasive LUAD. In addition, a predictive model integrating these six independent GGN features was established (named as invasion of lung adenocarcinoma by GGN features (ILAG)), and receiver-operating characteristic curve illustrated that the ILAG model presented good predictive value for invasive LUAD (AUC: 0.905, 95% CI: 0.890-0.919). In conclusion, The ILAG predictive model, which integrates imaging features of GGN via HRCT, including diameter, mean CT attenuation, heterogeneous uniformity of density, not defined nodule-lung interface, GGN with spiculation, type I, and type II vessel changes, shows great potential for early estimation of LUAD invasiveness.
Collapse
Affiliation(s)
- Bo Yan
- Clinical Research Unit, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Yifeng Jiang
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Shijie Fu
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Rong Li
- Clinical Research Unit, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University
| |
Collapse
|
2
|
Wu J, Li R, Zhang H, Zheng Q, Tao W, Yang M, Zhu Y, Ji G, Li W. Screening for lung cancer using thin-slice low-dose computed tomography in southwestern China: a population-based real-world study. Thorac Cancer 2024; 15:1522-1532. [PMID: 38798230 PMCID: PMC11219290 DOI: 10.1111/1759-7714.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES Lung cancer is one of the most common malignant tumors threatening human life and health. At present, low-dose computed tomography (LDCT) screening for the high-risk population to achieve early diagnosis and treatment of lung cancer has become the first choice recommended by many authoritative international medical organizations. To further optimize the lung cancer screening method, we conducted a real-world study of LDCT lung cancer screening in a large sample of a healthy physical examination population, comparing differences in lung nodules and lung cancer detection between thin and thick-slice LDCT scanning. METHODS A total of 29 296 subjects who underwent low-dose thick-slice CT scanning (5 mm thickness) from January 2015 to December 2015 and 28 058 subjects who underwent low-dose thin-slice CT scanning (1 mm thickness) from January 2018 to December 2018 in West China Hospital were included. The positive detection rate, detection rate of lung cancer, pathological stage of lung cancer, and mortality rate of lung cancer were analyzed and compared between the two groups. RESULTS The positive rate of LDCT screening in the thin-slice scanning group was significantly higher than that in the thick-slice scanning group (20.1% vs. 14.4%, p < 0.001). In addition, the lung cancer detection rate in the thin-slice LDCT screening positive group was significantly higher than that in the thick-slice scanning group (78.0% vs. 52.9%, p < 0.001). CONCLUSIONS The screening positive rate of low-dose thin-slice CT scanning is higher and more early-stage lung cancer (IA1 stage) can be detected in the screen-positive group.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Pulmonary and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
- State Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalChengduChina
- Institute of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduChina
| | - Ruicen Li
- Health Management Center, General Practice Medical CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Huohuo Zhang
- Department of Pulmonary and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
- State Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalChengduChina
- Institute of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduChina
| | - Qian Zheng
- West China Clinical Medical CollegeSichuan UniversityChengduChina
| | - Wenjuan Tao
- Institute of Hospital ManagementWest China Hospital, Sichuan UniversityChengduChina
| | - Ming Yang
- National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduChina
- Center of Gerontology and GeriatricsWest China Hospital, Sichuan UniversityChengduChina
| | - Yuan Zhu
- Health Management Center, General Practice Medical CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Guiyi Ji
- Health Management Center, General Practice Medical CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Weimin Li
- Department of Pulmonary and Critical Care MedicineWest China Hospital, Sichuan UniversityChengduChina
- State Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalChengduChina
- Institute of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐related Molecular NetworkWest China Hospital, Sichuan UniversityChengduChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduChina
| |
Collapse
|
3
|
Ren Y, Ma Q, Zeng X, Huang C, Tan S, Fu X, Zheng C, You F, Li X. Saliva‑microbiome‑derived signatures: expected to become a potential biomarker for pulmonary nodules (MCEPN-1). BMC Microbiol 2024; 24:132. [PMID: 38643115 PMCID: PMC11031921 DOI: 10.1186/s12866-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Oral microbiota imbalance is associated with the progression of various lung diseases, including lung cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, the relationship between oral microbiota and PNs remains unknown. METHODS We conducted a 'Microbiome with pulmonary nodule series study 1' (MCEPN-1) where we compared PN patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups (COG) analyses. RESULTS The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant differences were noted in community composition and abundance of oral microorganisms between the two groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily transporters and AraC family transcription regulators. CONCLUSIONS Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the potential of salivary microbiota as a new non-invasive biomarker for PNs. TRIAL REGISTRATION Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.
Collapse
Affiliation(s)
- Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chunxia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Shiyan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
4
|
Yan B, Chang Y, Jiang Y, Liu Y, Yuan J, Li R. A predictive model based on ground glass nodule features via high-resolution CT for identifying invasiveness of lung adenocarcinoma. Front Surg 2022; 9:973523. [PMID: 36090345 PMCID: PMC9458920 DOI: 10.3389/fsurg.2022.973523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The morphology of ground-glass nodule (GGN) under high-resolution computed tomography (HRCT) has been suggested to indicate different histological subtypes of lung adenocarcinoma (LUAD); however, existing studies only include the limited number of GGN characteristics, which lacks a systematic model for predicting invasive LUAD. This study aimed to construct a predictive model based on GGN features under HRCT for LUAD. Methods A total of 301 surgical LUAD patients with HRCT-confirmed GGN were enrolled, and their GGN-related features were assessed by 2 individual radiologists. The pathological diagnosis of the invasive LUAD was established by pathologic examination following surgery (including 171 invasive and 130 non-invasive LUAD patients). Results GGN features including shorter distance from pleura, larger diameter, area and mean CT attenuation, more heterogeneous uniformity of density, irregular shape, coarse margin, not defined nodule-lung interface, spiculation, pleural indentation, air bronchogram, vacuole sign, vessel changes, lobulation were observed in invasive LUAD patients compared with non-invasive LUAD patients. After adjustment by multivariate logistic regression model, GGN diameter (OR = 1.490, 95% CI, 1.326-1.674), mean CT attenuation (OR = 1.007, 95% CI, 1.004-1.011) and heterogeneous uniformity of density (OR = 3.009, 95% CI, 1.485-6.094) were independent risk factors for invasive LUAD. In addition, a predictive model integrating these three independent GGN features was established (named as invasion of lung adenocarcinoma by GGN features (ILAG)), and receiver-operating characteristic curve illustrated that the ILAG model presented good predictive value for invasive LUAD (AUC: 0.919, 95% CI, 0.889-0.949). Conclusions ILAG predictive model integrating GGN diameter, mean CT attenuation and heterogeneous uniformity of density via HRCT shows great potential for early estimation of LUAD invasiveness.
Collapse
Affiliation(s)
- Bo Yan
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chang
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Jiang
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of Statistics Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyi Yuan
- Department of Information Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|