1
|
Luck AN, Evans CC, Riggs MD, Foster JM, Moorhead AR, Slatko BE, Michalski ML. Concurrent transcriptional profiling of Dirofilaria immitis and its Wolbachia endosymbiont throughout the nematode life cycle reveals coordinated gene expression. BMC Genomics 2014; 15:1041. [PMID: 25433394 PMCID: PMC4289336 DOI: 10.1186/1471-2164-15-1041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/24/2023] Open
Abstract
Background Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle. Results Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis. Conclusions Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1041) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA.
| |
Collapse
|
2
|
Establishment of macrocyclic lactone resistant Dirofilaria immitis isolates in experimentally infected laboratory dogs. Parasit Vectors 2014; 7:494. [PMID: 25376278 PMCID: PMC4228187 DOI: 10.1186/s13071-014-0494-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Strains of Dirofilaria immitis suspected of lack of efficacy (LOE) to macrocyclic lactone (ML) preventive drugs have been increasingly reported in dogs by practicing veterinarians since 2005 in the Lower Mississippi Delta region. If proven, and not controlled in the early stages, the emergence of ML drug resistance threatens to become a widespread problem in the US that may limit the effectiveness of current preventive drug treatment methods. METHODS To validate practice reports, a statewide survey of Louisiana veterinarians was done to define the extent of the problem and identify focal 'hotspots' of reported ML LOEs using Geographic Information Systems (GIS) methods. The present study then utilized microfilariae (Mf) from two canine field cases from different state locations that fit criteria for a high index of suspicion of LOE against heartworms by ML drugs. Blood containing Mf from the canine field cases was used to infect and produce L3 in Aedes aegypti for experimental infection of two groups of dogs, each of which contained two laboratory dogs, one treated with prophylactic ivermectin (12 μg/kg) monthly for 6 months at twice the label dose (6 μg/kg), and one untreated control. RESULTS Both treated and untreated dogs from Group I and Group II developed patent D. immitis infections by 218 DPI and 189 DPI, respectively, as evidenced by a positive occult heartworm antigen test and microfilaremia by the Knott's test. Mf counts gradually increased post-patency in test and control dogs. Infective larvae raised from microfilariae from the treated Group I dog were used to successfully establish a second generation isolate, confirming heritability of resistance in the face of a monthly ivermectin challenge dose of 24 μg/kg, given monthly for 3 months. CONCLUSIONS These experimental infection studies provide in vivo evidence of the existence of ML drug resistance in dogs infected by D. immitis L3 from suspect field LOE cases in the Lower Mississippi Delta. Results encourage further work on mechanisms underlying the emergence of ML resistance in D. immitis and development of evidence-based resistance management strategies for heartworm preventives in order to extend the useful life of current drugs.
Collapse
|
3
|
Fu Y, Lan J, Zhang Z, Hou R, Wu X, Yang D, Zhang R, Zheng W, Nie H, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G. Novel insights into the transcriptome of Dirofilaria immitis. PLoS One 2012; 7:e41639. [PMID: 22911833 PMCID: PMC3402454 DOI: 10.1371/journal.pone.0041639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023] Open
Abstract
Background The heartworm Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis in dogs and cats, and also infects a wide range of wild mammals as well as humans. One bottleneck for the design of fundamentally new intervention and management strategies against D. immitis may be the currently limited knowledge of fundamental molecular aspects of D. immitis. Methodology/Principal Findings A next-generation sequencing platform combining computational approaches was employed to assess a global view of the heartworm transcriptome. A total of 20,810 unigenes (mean length = 1,270 bp) were assembled from 22.3 million clean reads. From these, 15,698 coding sequences (CDS) were inferred, and about 85% of the unigenes had orthologs/homologs in public databases. Comparative transcriptomic study uncovered 4,157 filarial-specific genes as well as 3,795 genes potentially involved in filarial-Wolbachia symbiosis. In addition, the potential intestine transcriptome of D. immitis (1,101 genes) was mined for the first time, which might help to discover ‘hidden antigens’. Conclusions/Significance This study provides novel insights into the transcriptome of D. immitis and sheds light on its molecular processes and survival mechanisms. Furthermore, it provides a platform to discover new vaccine candidates and potential targets for new drugs against dirofilariosis.
Collapse
Affiliation(s)
- Yan Fu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Jingchao Lan
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Zhihe Zhang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xuhang Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Deying Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Runhui Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Wanpeng Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Huaming Nie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Ning Yan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Zhi Yang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Chengdong Wang
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Li Liu
- The Sichuan Key Laboratory for Conservation Biology on Endangered Wildlife – Developing toward a State Key Laboratory for China, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Shuxian Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya’an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
- * E-mail:
| |
Collapse
|