Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV. Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.
PLoS Pathog 2011;
7:e1002419. [PMID:
22144901 PMCID:
PMC3228811 DOI:
10.1371/journal.ppat.1002419]
[Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/20/2011] [Indexed: 01/13/2023] Open
Abstract
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrPSc), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrPSc template. Here we report that authentic PrPSc and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrPSc and lack any detectable PrPSc particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrPSc evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrPSc and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as “deformed templating” postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrPSc can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.
The transmissible agent of prion disease consists of a prion protein in its abnormal conformation (PrPSc), which replicates itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrPSc. The current study reports that infectious prions and transmissible prion disease can be triggered in wild type animals by amyloid fibrils produced from recombinant prion prtotein, which are structurally different from PrPSc and lacks any detectable PrPSc particles. This work introduces a new hypothesis that transmissible prion diseases can be induced by prion protein structures different from that of authentic PrPSc and suggests that a new mechanism for triggering PrPSc formation different from the classical templating exists. The current work provides important new insight into the mechanisms underlying genesis and evolution of the transmissible states of the prion protein and has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.
Collapse