1
|
Yinzhi D, Jianhua H, Hesheng L. The roles of liver sinusoidal endothelial cells in liver ischemia/reperfusion injury. J Gastroenterol Hepatol 2024; 39:224-230. [PMID: 37939704 DOI: 10.1111/jgh.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Liver ischemia/reperfusion injury (IRI) is a major complication after partial hepatectomy and liver transplantation and during hypovolemic shock and hypoxia-related diseases. Liver IRI is a current research hotspot. The early stage of liver IRI is characterized by injury and dysfunction of liver sinusoidal endothelial cells (LSECs), which, along with hepatocytes, are the major cells involved in liver injury. In this review, we elaborate on the roles played by LSECs in liver IRI, including the pathological features of LSECs, LSECs exacerbation of the sterile inflammatory response, LSECs interactions with platelets and the promotion of liver regeneration, and the activation of LSECs autophagy. In addition, we discuss the study of LSECs as therapeutic targets for the treatment of liver IRI and the existing problems when applying LSECs in liver IRI research.
Collapse
Affiliation(s)
- Deng Yinzhi
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - He Jianhua
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Luo Hesheng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Gu C, Kong F, Zeng J, Geng X, Sun Y, Chen X. Remote ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in mice by activating NMDAR/AMPK/PGC-1α/SIRT3 signaling. Cell Biosci 2023; 13:57. [PMID: 36927808 PMCID: PMC10018930 DOI: 10.1186/s13578-023-00999-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND To study the protective effects of delayed remote ischemic preconditioning (RIPC) against spinal cord ischemia-reperfusion injury (SCIRI) in mice and determine whether SIRT3 is involved in this protection and portrayed its upstream regulatory mechanisms. METHODS In vivo, WT or SIRT3 global knockout (KO) mice were exposed to right upper and lower limbs RIPC or sham ischemia. After 24 h, the abdominal aorta was clamped for 20 min, then re-perfused for 3 days. The motor function of mice, number of Nissl bodies, apoptotic rate of neurons, and related indexes of oxidative stress in the spinal cord were measured to evaluate for neuroprotective effects. The expression and correlation of SIRT3 and NMDAR were detected by WB and immunofluorescence. In vitro, primary neurons were exacted and OGD/R was performed to simulate SCIRI in vivo. Neuronal damage was assessed by observing neuron morphology, detecting LDH release ratio, and flow cytometry to analyze the apoptosis. MnSOD and CAT enzyme activities, GSH and ROS level were also measured to assess neuronal antioxidant capacity. NMDAR-AMPK-PGC-1α signaling was detected by WB to portray upstream regulatory mechanisms of RIPC regulating SIRT3. RESULTS Compared to the SCIRI mice without RIPC, mice with RIPC displayed improved motor function recovery, a reduced neuronal loss, and enhanced antioxidant capacity. To the contrary, the KO mice did not exhibit any effect of RIPC-induced neuroprotection. Similar results were observed in vitro. Further analyses with spinal cord tissues or primary neurons detected enhanced MnSOD and CAT activities, as well as increased GSH level but decreased MDA or ROS production in the RIPC + I/R mice or NMDA + OGD/R neurons. However, these changes were completely inhibited by the absence of SIRT3. Additionally, NMDAR-AMPK-PGC-1α signaling was activated to upregulate SIRT3 levels, which is essential for RIPC-mediated neuroprotection. CONCLUSIONS RIPC enhances spinal cord ischemia tolerance in a SIRT3-dependent manner, and its induced elevated SIRT3 levels are mediated by the NMDAR-AMPK-PGC-1α signaling pathway. Combined therapy targeting SIRT3 is a promising direction for treating SCIRI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Fanqi Kong
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China. .,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| |
Collapse
|
4
|
Protective Efficiency Comparison of Direct and Remote Ischemic Preconditioning on Ischemia Reperfusion Injury of the Liver in Patients Undergoing Partial Hepatectomy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2763320. [PMID: 36647546 PMCID: PMC9840547 DOI: 10.1155/2023/2763320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023]
Abstract
Objective Ischemia reperfusion injury greatly damages liver function and deteriorates the prognosis of patients undergoing partial hepatectomy. This study is to compare the protective efficiency of direct and remote ischemic preconditioning (DIPC and RIPC) on ischemia reperfusion injury of the liver in patients undergoing partial hepatectomy. Methods 90 patients scheduled for partial hepatectomy were enrolled and randomly divided into control (n = 30), DIPC (n = 30), and RIPC (n = 30) groups. Baseline and surgery characteristics were collected, and ischemic preconditioning methods were carried out. Intraoperative hemodynamics, liver function and liver reserve capacity, oxidative stress, and inflammatory responses were measured, and the incidence of postoperative adverse reactions was calculated finally. Results 10 patients were excluded from the study, and finally, the eligible patients in three groups were 27, 28, and 25, separately. No significant differences were observed in baseline and surgery characteristics among the three groups. SBP and DBP were significantly higher after hepatic portal vein occlusion while they were significantly lower after surgery in the DIPC and RIPC groups compared with that in the control group, SBP and DBP were of great fluctuation at different time points in the control group while they showed much more stabilization in the DIPC and RIPC groups. ALT, AST, and TBIL were significantly decreased on days 1, 3, and 5 after surgery, and ICG R15 was significantly decreased while ICG K value and EHBF were significantly increased on day 1 after surgery in the DIPC and RIPC groups compared with that in the control group. Moreover, antioxidant enzyme SOD was increased, and inflammatory factors TNF-α and IL-1β were decreased 24 hours after surgery in the DIPC and RIPC groups compared with that in the control group. DIPC and RIPC also decreased hospital stays and the incidence of nausea, vomiting, and hypertension. Conclusion DIPC and RIPC both alleviated ischemia reperfusion injury of the liver and reduced perioperative complications with similar protective efficiency in patients undergoing partial hepatectomy.
Collapse
|
5
|
Morris SM, Chauhan A. The role of platelet mediated thromboinflammation in acute liver injury. Front Immunol 2022; 13:1037645. [PMID: 36389830 PMCID: PMC9647048 DOI: 10.3389/fimmu.2022.1037645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Acute liver injuries have wide and varied etiologies and they occur both in patients with and without pre-existent chronic liver disease. Whilst the pathophysiological mechanisms remain distinct, both acute and acute-on-chronic liver injury is typified by deranged serum transaminase levels and if severe or persistent can result in liver failure manifest by a combination of jaundice, coagulopathy and encephalopathy. It is well established that platelets exhibit diverse functions as immune cells and are active participants in inflammation through processes including immunothrombosis or thromboinflammation. Growing evidence suggests platelets play a dualistic role in liver inflammation, shaping the immune response through direct interactions and release of soluble mediators modulating function of liver sinusoidal endothelial cells, stromal cells as well as migrating and tissue-resident leucocytes. Elucidating the pathways involved in initiation, propagation and resolution of the immune response are of interest to identify therapeutic targets. In this review the provocative role of platelets is outlined, highlighting beneficial and detrimental effects in a spatial, temporal and disease-specific manner.
Collapse
Affiliation(s)
- Sean M. Morris
- The Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Abhishek Chauhan
- The Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Abhishek Chauhan,
| |
Collapse
|
6
|
Pretzsch E, Nieß H, Khaled NB, Bösch F, Guba M, Werner J, Angele M, Chaudry IH. Molecular Mechanisms of Ischaemia-Reperfusion Injury and Regeneration in the Liver-Shock and Surgery-Associated Changes. Int J Mol Sci 2022; 23:12942. [PMID: 36361725 PMCID: PMC9657004 DOI: 10.3390/ijms232112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a major challenge during liver surgery, liver preservation for transplantation, and can cause hemorrhagic shock with severe hypoxemia and trauma. The reduction of blood supply with a concomitant deficit in oxygen delivery initiates various molecular mechanisms involving the innate and adaptive immune response, alterations in gene transcription, induction of cell death programs, and changes in metabolic state and vascular function. Hepatic IRI is a major cause of morbidity and mortality, and is associated with an increased risk for tumor growth and recurrence after oncologic surgery for primary and secondary hepatobiliary malignancies. Therapeutic strategies to prevent or treat hepatic IRI have been investigated in animal models but, for the most part, have failed to provide a protective effect in a clinical setting. This review focuses on the molecular mechanisms underlying hepatic IRI and regeneration, as well as its clinical implications. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Florian Bösch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Asong-Fontem N, Panisello-Rosello A, Beghdadi N, Lopez A, Rosello-Catafau J, Adam R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant Proc 2022; 54:1954-1969. [PMID: 35961798 DOI: 10.1016/j.transproceed.2022.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
To expand the pool of organs, hypothermic oxygenated perfusion (HOPE), one of the most promising perfusion protocols, is currently performed after cold storage (CS) at transplant centers (HOPE-END). We investigated a new timing for HOPE, hypothesizing that performing HOPE before CS (HOPE-PRE) could boost mitochondrial protection allowing the graft to better cope with the accumulation of oxidative stress during CS. We analyzed liver injuries at 3 different levels. Histologic analysis demonstrated that, compared to classical CS (CTRL), the HOPE-PRE group showed significantly less ischemic necrosis compared to CTRL vs HOPE-END. From a biochemical standpoint, transaminases were lower after 2 hours of reperfusion in the CTRL vs HOPE-PRE group, which marked decreased liver injury. qPCR analysis on 37 genes involved in ischemia-reperfusion injury revealed protection in HOPE-PRE and HOPE-END compared to CTRL mediated through similar pathways. However, the CTRL vs HOPE-PRE group demonstrated an increased transcriptional level for protective genes compared to the CTRL vs HOPE-END group. This study provides insights on novel biomarkers that could be used in the clinic to better characterize graft quality improving transplantation outcomes.
Collapse
Affiliation(s)
- Njikem Asong-Fontem
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France.
| | - Arnau Panisello-Rosello
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - Nassiba Beghdadi
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| | - Alexandre Lopez
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France
| | - Joan Rosello-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - René Adam
- Université Paris-Saclay, Faculté de Médecine, Unité Chronothérapie, Cancers et Transplantation, Kremlin-Bicêtre, France; Center Hépato-Biliaire, APHP Hôpital Universitaire Paul Brousse, Villejuif, France
| |
Collapse
|
8
|
Gao F, Qiu X, Wang K, Shao C, Jin W, Zhang Z, Xu X. Targeting the Hepatic Microenvironment to Improve Ischemia/Reperfusion Injury: New Insights into the Immune and Metabolic Compartments. Aging Dis 2022; 13:1196-1214. [PMID: 35855339 PMCID: PMC9286916 DOI: 10.14336/ad.2022.0109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is mainly characterized by high activation of immune inflammatory responses and metabolic responses. Understanding the molecular and metabolic mechanisms underlying development of hepatic IRI is critical for developing effective therapies for hepatic IRI. Recent advances in research have improved our understanding of the pathogenesis of IRI. During IRI, hepatocyte injury and inflammatory responses are mediated by crosstalk between the immune cells and metabolic components. This crosstalk can be targeted to treat or reverse hepatic IRI. Thus, a deep understanding of hepatic microenvironment, especially the immune and metabolic responses, can reveal new therapeutic opportunities for hepatic IRI. In this review, we describe important cells in the liver microenvironment (especially non-parenchymal cells) that regulate immune inflammatory responses. The role of metabolic components in the diagnosis and prevention of hepatic IRI are discussed. Furthermore, recent updated therapeutic strategies based on the hepatic microenvironment, including immune cells and metabolic components, are highlighted.
Collapse
Affiliation(s)
- Fengqiang Gao
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Qiu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,6Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuxiao Shao
- 7Department of Hepatobiliary and Pancreatic Surgery, Affiliated Lishui Hospital, Zhejiang University School of Medicine, Lishui, China
| | - Wenjian Jin
- 8Department of Hepatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Zhang
- 6Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- 1Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2Zhejiang University Cancer Center, Hangzhou, China.,3Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,4NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,5Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Tao T, Ye B, Xu Y, Wang Y, Zhu Y, Tian Y. β-Patchoulene Preconditioning Protects Mice Against Hepatic Ischemia–Reperfusion Injury by Regulating Nrf2/HO-1 Signaling Pathway. J Surg Res 2022; 275:161-171. [DOI: 10.1016/j.jss.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/18/2022]
|
10
|
Research Progress on the Pharmacological Action of Schisantherin A. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6420865. [PMID: 35190748 PMCID: PMC8858060 DOI: 10.1155/2022/6420865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
Schisantherin A (Sch A) is a dibenzocyclooctadiene lignan monomer isolated from the fruit of Schisandra chinensis (Turcz.) Baill. (S. chinensis). At present, many studies have shown that Sch A has a wide range of pharmacological effects, including its anti-Parkinson and anti-inflammatory effects and ability to protect the liver, protect against ischemia-reperfusion (I/R) injury, suppress osteoclast formation, and improve learning and memory. Its mechanism may be related to the antioxidant, anti-inflammatory, and antiapoptotic properties of Sch A through the MAPK, NF-κB, AKT/GSK3β, and PI3K/AKT pathways. This is the first review of the recent studies on the pharmacological mechanism of Sch A.
Collapse
|
11
|
Vlastos D, Zeinah M, Ninkovic-Hall G, Vlachos S, Salem A, Asonitis A, Chavan H, Kalampalikis L, Al Shammari A, Alvarez Gallesio JM, Pons A, Andreadou I, Ikonomidis I. The effects of ischaemic conditioning on lung ischaemia-reperfusion injury. Respir Res 2022; 23:351. [PMID: 36527070 PMCID: PMC9756694 DOI: 10.1186/s12931-022-02288-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Ischaemia-reperfusion injury (IRI) encompasses the deleterious effects on cellular function and survival that result from the restoration of organ perfusion. Despite their unique tolerance to ischaemia and hypoxia, afforded by their dual (pulmonary and bronchial) circulation as well as direct oxygen diffusion from the airways, lungs are particularly susceptible to IRI (LIRI). LIRI may be observed in a variety of clinical settings, including lung transplantation, lung resections, cardiopulmonary bypass during cardiac surgery, aortic cross-clamping for abdominal aortic aneurysm repair, as well as tourniquet application for orthopaedic operations. It is a diagnosis of exclusion, manifesting clinically as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Ischaemic conditioning (IC) signifies the original paradigm of treating IRI. It entails the application of short, non-lethal ischemia and reperfusion manoeuvres to an organ, tissue, or arterial territory, which activates mechanisms that reduce IRI. Interestingly, there is accumulating experimental and preliminary clinical evidence that IC may ameliorate LIRI in various pathophysiological contexts. Considering the detrimental effects of LIRI, ranging from ALI following lung resections to primary graft dysfunction (PGD) after lung transplantation, the association of these entities with adverse outcomes, as well as the paucity of protective or therapeutic interventions, IC holds promise as a safe and effective strategy to protect the lung. This article aims to provide a narrative review of the existing experimental and clinical evidence regarding the effects of IC on LIRI and prompt further investigation to refine its clinical application.
Collapse
Affiliation(s)
- Dimitrios Vlastos
- grid.415914.c0000 0004 0399 9999Department of Vascular Surgery, Countess of Chester Hospital, Chester, UK ,grid.411449.d0000 0004 0622 4662Second Department of Cardiology, Attikon University Hospital, Athens, Greece ,Present Address: Liverpool, UK
| | - Mohamed Zeinah
- grid.415992.20000 0004 0398 7066Department of Cardiac Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK ,grid.7269.a0000 0004 0621 1570Ain Shams University, Cairo, Egypt
| | - George Ninkovic-Hall
- grid.415970.e0000 0004 0417 2395Department of Vascular Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Stefanos Vlachos
- grid.411449.d0000 0004 0622 4662Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Agni Salem
- grid.415992.20000 0004 0398 7066Department of Cardiac Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Athanasios Asonitis
- grid.413157.50000 0004 0590 2070Department of Cardiothoracic Surgery, NHS Golden Jubilee National Hospital, Glascow, UK
| | - Hemangi Chavan
- grid.421662.50000 0000 9216 5443Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Lazaros Kalampalikis
- grid.414012.20000 0004 0622 6596Department of Minimally Invasive Cardiac Surgery, Metropolitan General Hospital, Athens, Greece
| | - Abdullah Al Shammari
- grid.421662.50000 0000 9216 5443Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - José María Alvarez Gallesio
- grid.421662.50000 0000 9216 5443Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Aina Pons
- grid.421662.50000 0000 9216 5443Department of Thoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Ioanna Andreadou
- grid.5216.00000 0001 2155 0800School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- grid.411449.d0000 0004 0622 4662Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| |
Collapse
|
12
|
Yan Y, Gu T, Christensen SDK, Su J, Lassen TR, Hjortbak MV, Lo IJ, Venø ST, Tóth AE, Song P, Nielsen MS, Bøtker HE, Blagoev B, Drasbek KR, Kjems J. Cyclic Hypoxia Conditioning Alters the Content of Myoblast-Derived Extracellular Vesicles and Enhances Their Cell-Protective Functions. Biomedicines 2021; 9:biomedicines9091211. [PMID: 34572398 PMCID: PMC8471008 DOI: 10.3390/biomedicines9091211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC. In this study, we used C2C12 cells as a model system and performed cyclic hypoxia-reoxygenation (HR) to mimic RIC. EVs were collected and subjected to small RNA profiling and proteomics. HR induced a distinct shift in the miRNA profile and protein content in EVs. HR EV treatment restored cell viability, dampened inflammation, and enhanced tube formation in in vitro assays. In vivo, HR EVs showed increased accumulation in the ischemic brain compared to EVs secreted from normoxic culture (N EVs) in a mouse undergoing transient middle cerebral artery occlusion (tMCAO). We conclude that HR conditioning changes the miRNA and protein profile in EVs released by C2C12 cells and enhances the protective signal in the EVs to recipient cells in vitro.
Collapse
Affiliation(s)
- Yan Yan
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Omiics ApS, 8200 Aarhus, Denmark;
| | - Tingting Gu
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Stine Duelund Kaas Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - IJu Lo
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Andrea Erzsebet Tóth
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.E.T.); (M.S.N.)
| | - Ping Song
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Kim Ryun Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-289-920-86
| |
Collapse
|
13
|
Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 2021; 476:3857-3867. [PMID: 34125317 DOI: 10.1007/s11010-021-04192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Collapse
|
14
|
ELKady AH, Elkafoury BM, Saad DA, Abd el-Wahed DM, Baher W, Ahmed MA. Hepatic ischemia reperfusion injury: effect of moderate intensity exercise and oxytocin compared to l-arginine in a rat model. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Background
Hepatic ischemia reperfusion (IR) injury is considered as a main cause of liver damage and dysfunction. The l-arginine/nitric oxide pathway seems to be relevant during this process of IR. Although acute intense exercise challenges the liver with increased reactive oxygen species (ROS), regular training improves hepatic antioxidant status. Also, oxytocin (Oxy), besides its classical functions, it exhibits a potent antistress, anti-inflammatory, and antioxidant effects. This study was designed to evaluate the hepatic functional and structural changes induced by hepatic IR injury in rats and to probe the effect and potential mechanism of moderate intensity exercise training and/or Oxy, in comparison to a nitric oxide donor, l-arginine, against liver IR-induced damage.
Results
Compared to the sham-operated control group, the hepatic IR group displayed a significant increase in serum levels of ALT and AST, plasma levels of MDA and TNF-α, and significant decrease in plasma TAC and nitrite levels together with the worsening of liver histological picture. L-Arg, Oxy, moderate intensity exercise, and the combination of both Oxy and moderate intensity exercises ameliorated these deleterious effects that were evident by the significant decrease in serum levels of ALT and AST, significant elevation in TAC and nitrite, and significant decline in lipid peroxidation (MDA) and TNF-α, besides regression of histopathological score regarding hepatocyte necrosis, vacuolization, and nuclear pyknosis. Both the moderate intensity exercise-trained group and Oxy-treated group showed a significant decline in TNF-α and nitrite levels as compared to l-Arg-treated group. The Oxy-treated group showed statistical insignificant changes in serum levels of ALT, AST, and plasma levels of nitrite, MDA, TAC, and TNF-α as compared to moderate intensity exercise-trained group.
Conclusion
The combination of both moderate intensity exercise and Oxy displayed more pronounced hepatoprotection on comparison with l-Arg which could be attributed to their more prominent antioxidant and anti-inflammatory effects but not due to their NO-enhancing effect.
Collapse
|
15
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
16
|
Caru M, Levesque A, Lalonde F, Curnier D. An overview of ischemic preconditioning in exercise performance: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:355-369. [PMID: 31333890 PMCID: PMC6620415 DOI: 10.1016/j.jshs.2019.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 06/10/2023]
Abstract
Ischemic preconditioning (IPC) is an attractive method for athletes owing to its potential to enhance exercise performance. However, the effectiveness of the IPC intervention in the field of sports science remains mitigated. The number of cycles of ischemia and reperfusion, as well as the duration of the cycle, varies from one study to another. Thus, the aim of this systematic review was to provide a comprehensive review examining the IPC literature in sports science. A systematic literature search was performed in PubMed (MEDLINE) (from 1946 to May 2018), Web of Science (sport sciences) (from 1945 to May 2018), and EMBASE (from 1974 to May 2018). We included all studies investigating the effects of IPC on exercise performance in human subjects. To assess scientific evidence for each study, this review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The electronic database search generated 441 potential articles that were screened for eligibility. A total of 52 studies were identified as eligible and valid for this systematic review. The studies included were of high quality, with 48 of the 52 studies having a randomized, controlled trial design. Most studied showed that IPC intervention can be beneficial to exercise performance. However, IPC intervention seems to be more beneficial to healthy subjects who wish to enhance their performance in aerobic exercises than athletes. Thus, this systematic review highlights that a better knowledge of the mechanisms generated by the IPC intervention would make it possible to optimize the protocols according to the characteristics of the subjects with the aim of suggesting to the subjects the best possible experience of IPC intervention.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Psychology, University of Paris-Nanterre, Nanterre 92000, France
- Laboratoire EA 4430 – Clinique Psychanalyse Developpement (CliPsyD), University of Paris-Nanterre, Nanterre 92000, France
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| | - Ariane Levesque
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Physical Activity Sciences, Faculty of Sciences, Université du Québec à Montréal, Montreal, Quebec H2L 2C4, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| |
Collapse
|
17
|
Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int 2019; 39:788-801. [PMID: 30843314 PMCID: PMC6483869 DOI: 10.1111/liv.14091] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Liver disease causing end organ failure is a growing cause of mortality. In most cases, the only therapy is liver transplantation. However, liver transplantation is a complex undertaking and its success is dependent on a number of factors. In particular, liver transplantation is subject to the risks of ischaemia-reperfusion injury (IRI). Liver IRI has significant effects on the function of a liver after transplantation. The cellular and molecular mechanisms governing IRI in liver transplantation are numerous. They involve multiple cells types such as liver sinusoidal endothelial cells, hepatocytes, Kupffer cells, neutrophils and platelets acting via an interconnected network of molecular pathways such as activation of toll-like receptor signalling, alterations in micro-RNA expression, production of ROS, regulation of autophagy and activation of hypoxia-inducible factors. Interestingly, the cellular and molecular events in liver IRI can be correlated with clinical risk factors for IRI in liver transplantation such as donor organ steatosis, ischaemic times, donor age, and donor and recipient coagulopathy. Thus, understanding the relationship of the clinical risk factors for liver IRI to the cellular and molecular mechanisms that govern it is critical to higher levels of success after liver transplantation. This in turn will help in the discovery of therapeutics for IRI in liver transplantation - a process that will lead to improved outcomes for patients suffering from end-stage liver disease.
Collapse
Affiliation(s)
- Wasim A. Dar
- Department of Surgery, McGovern Medical School at UT Health, Houston, TX
| | - Elise Sullivan
- Department of Anesthesia, McGovern Medical School at UT Health, Houston, TX
| | - John S. Bynon
- Department of Surgery, McGovern Medical School at UT Health, Houston, TX
| | - Holger Eltzschig
- Department of Anesthesia, McGovern Medical School at UT Health, Houston, TX
| | - Cynthia Ju
- Department of Anesthesia, McGovern Medical School at UT Health, Houston, TX
| |
Collapse
|
18
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
19
|
Jiménez-Castro MB, Casillas-Ramírez A, Negrete-Sánchez E, Avalos-de León CG, Gracia-Sancho J, Peralta C. Adipocytokines in Steatotic Liver Surgery/Transplantation. Transplantation 2019; 103:71-77. [PMID: 30586349 DOI: 10.1097/tp.0000000000002098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the shortage of liver grafts available for transplantation, the restrictions on graft quality have been relaxed, and marginal grafts, such as steatotic livers, are now accepted. However, this policy change has not solved the problem, because steatotic liver grafts tolerate ischemia-reperfusion (I/R) injury poorly. Adipocytokines differentially modulate steatosis, inflammation, and fibrosis and are broadly present in hepatic resections and transplants. The potential use of adipocytokines as biomarkers of the severity of steatosis and liver damage to aid the identification of high-risk steatotic liver donors and to evaluate hepatic injury in the postoperative period are discussed. The hope of finding new therapeutic strategies aimed specifically at protecting steatotic livers undergoing surgery is a strong impetus for identifying the mechanisms responsible for hepatic failure after major surgical intervention. Hence, the most recently described roles of adipocytokines in steatotic livers subject to I/R injury are discussed, the conflicting results in the literature are summarized, and reasons are offered as to why strategic pharmacologic control of adipocytokines has yet to yield clinical benefits. After this, the next steps needed to transfer basic knowledge about adipocytokines into clinical practice to protect marginal livers subject to I/R injury are presented. Recent strategies based on adipocytokine regulation, which have shown efficacy in various pathologies, and hold promise for hepatic resection and transplantation are also outlined.
Collapse
Affiliation(s)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria "Bicentenario 2010", Ciudad Victoria, México
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, México
| | - Elsa Negrete-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Facultad de Medicina, Universidad International de Cataluña, Barcelona, Spain
| |
Collapse
|
20
|
Gholampour F, Roozbeh J, Janfeshan S, Karimi Z. Remote ischemic per-conditioning protects against renal ischemia-reperfusion injury via suppressing gene expression of TLR4 and TNF-α in rat model. Can J Physiol Pharmacol 2018; 97:112-119. [PMID: 30501397 DOI: 10.1139/cjpp-2018-0543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathogenesis of renal ischemia-reperfusion injury (IRI) involves both inflammatory processes and oxidative stress in the kidney. This study determined whether remote ischemic per-conditioning (RIPerC) is mediated by toll-like receptor 4 (TLR4) signaling pathway in rats. Renal IR injury was induced by occluding renal arteries for 45 min followed by 24 h of reperfusion. RIPerC included 4 cycles of 2 min of ischemia of the left femoral artery followed by 3 min of reperfusion performed at the start of renal ischemia. Rats were divided into sham, IR, and RIPerC groups. At the end of the reperfusion period, urine, blood and tissue samples were gathered. IR created kidney dysfunction, as ascertained by a significant decrease in creatinine clearance and a significant increase in sodium fractional excretion. These changes occurred in concert with a decrease in the activities of glutathione peroxidase, catalase, and superoxide dismutase with an increment in malondialdehyde levels, mRNA expression levels of TLR4 and tumor necrosis factor α (TNF-α), and histological damage in renal tissues. RIPerC treatment diminished all these changes. This study demonstrates that RIPerC has protective effects on the kidney after renal IR, which might be related to the inhibition of the TLR4 signaling pathway and augmentation of antioxidant systems.
Collapse
Affiliation(s)
- Firouzeh Gholampour
- a Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Jamshid Roozbeh
- b Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Janfeshan
- c Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | - Zeinab Karimi
- b Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
22
|
Oral K, Akan M, Özkardeşler S, Boztaş N, Ergür BU, Güneli ME, Olguner Ç, Fidan H. Comparison of Direct and Remote Ischaemic Preconditioning of Renal Ischaemia Reperfusion Injury in Rats. Turk J Anaesthesiol Reanim 2018; 46:453-461. [PMID: 30505608 DOI: 10.5152/tjar.2018.07992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 11/22/2022] Open
Abstract
Objective One of the methods that can be used to prevent ischaemia reperfusion (IR) injury is ischaemic preconditioning. The aim of this study was to evaluate and compare the effects of remote and direct ischaemic preconditioning (RIPC and DIPC) histopathologically in the rat renal IR injury model. Methods After obtaining an approval from the Dokuz Eylül University School of Medicine Ethics Committee, 28 Wistar Albino male rats were divided into four groups. In Group I (Sham, n=7), laparotomy and left renal pedicle dissection were performed, but nothing else was done. In Group II (IR, n=7), after 45 minutes of left renal pedicle occlusion, reperfusion lasting 4 hours was performed. In Group III (DIPC+IR, n=7), after four cycles of ischaemic preconditioning applied to the left kidney, renal IR was performed. In Group IV (RIPC+IR, n=7), after three cycles of ischaemic preconditioning applied to the left hind leg, renal IR was performed. All rats were sacrificed, and the left kidney was processed for conventional histopathology. Results The histopathological injury score of the kidney was significantly lower in the sham group compared with the other groups (p<0.01). The injury scores of the DIPC+IR and RIPC+IR groups were significantly lower than in the IR group (p<0.05). In the RIPC+IR group, the injury score for erythrocyte extravasation was found to be significantly lower than in the DIPC+IR group (p<0.05). Conclusion In the present study, it was demonstrated that both DIPC and RIPC decreased renal IR injury, but RIPC was found to be more effective than DIPC. This protective effect requiresfurther detailed experimental and clinical studies.
Collapse
Affiliation(s)
- Keziban Oral
- Department of Anaesthesiology and Reanimation, Katip Çelebi University, İzmir, Turkey
| | - Mert Akan
- Department of Anaesthesiology and Reanimation, Kent Hospital, İzmir, Turkey
| | - Sevda Özkardeşler
- Department of Anaesthesiology and Reanimation, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Nilay Boztaş
- Department of Anaesthesiology and Reanimation, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Bekir Uğur Ergür
- Department of Histology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Mehmet Ensari Güneli
- Laboratory Animal Department, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Çimen Olguner
- Department of Anaesthesiology and Reanimation, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Hatice Fidan
- Department of Anaesthesiology and Reanimation, Ereğli Hospital, Zonguldak, Turkey
| |
Collapse
|
23
|
He N, Li JH, Jia JJ, Xu KD, Zhou YF, Jiang L, Lu HH, Yin SY, Xie HY, Zhou L, Zheng SS. Hypothermic Machine Perfusion's Protection on Porcine Kidney Graft Uncovers Greater Akt-Erk Phosphorylation. Transplant Proc 2018; 49:1923-1929. [PMID: 28923649 DOI: 10.1016/j.transproceed.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/29/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND To investigate the potential mechanisms of hypothermic machine perfusion (HMP)'s beneficial effects on kidney graft over static cold storage (SCS) in vitro. METHODS Ten kidneys of 5 Bama miniature male pigs were paired into 2 groups: SCS group and HMP group. Preservation solutions were taken at 0, 1, 3, and 6 hours for the measurement of K+, Na+, Cl-, blood urea nitrogen (BUN), creatinine (Cr), and lactate dehydrogenase (LDH) using the standard laboratory methods. Renal cortex were harvested at 6 hours for the following measurement: lactic acid (LD), adenosine triphosphate (ATP), malondialdehyde (MDA), neutrophil accumulation (MPO), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β). Ischemia-induced apoptosis and the protein expression levels of total Akt, phospho-Akt, total Erk, and phospho-Erk were analyzed by Western blotting. RESULTS Almost all of the tested metabolites in preservation solutions were reduced with time in the HMP group. Levels of Na+, Cl-, BUN, Cr, K+, and LDH were lower in the HMP group compared with the SCS group, with differences in the first 4 reaching statistical significance. HMP alleviated ATP degradation and LD accumulation, diminished the MDA (P < .05) and MPO (P = .227) levels, and greatly raised IL-10 and TGF-β (P < .05) expression. A marked decrease of proapoptotic and a large increase of antiapoptotic markers (P < .05) along with greatly raised Akt (P < .05) and Erk (P < .01) phosphorylation was observed in the kidney of the HMP group compared with the SCS group. CONCLUSION HMP's kidney graft protection involves inhibition of accumulation of toxic metabolites, oxidative damage, and apoptosis along with upregulation of the Akt and Erk signaling pathway.
Collapse
Affiliation(s)
- N He
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - J-H Li
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - J-J Jia
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - K-D Xu
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Y-F Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - L Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - H-H Lu
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - S-Y Yin
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - H-Y Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - L Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China.
| | - S-S Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
24
|
Weber NC, Zuurbier CJ, Hollmann MW. Remote ischaemic preconditioning of the lung: from bench to bedside-are we there yet? J Thorac Dis 2018; 10:98-101. [PMID: 29600031 DOI: 10.21037/jtd.2017.12.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A) Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A) Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A) Academic Medical Centre (AMC), Amsterdam, the Netherlands
| |
Collapse
|
25
|
Trocha M, Merwid-Ląd A, Pieśniewska M, Kwiatkowska J, Fereniec-Gołębiewska L, Kowalski P, Szeląg A, Sozański T. Age-related differences in function and structure of rat livers subjected to ischemia/reperfusion. Arch Med Sci 2018; 14:388-395. [PMID: 29593814 PMCID: PMC5868678 DOI: 10.5114/aoms.2018.73470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/17/2015] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Liver function is affected during ischemia/reperfusion (IR). The current state of knowledge about liver aging processes during IR is incomplete. We evaluated the effects of aging on liver structure and function under IR conditions. MATERIAL AND METHODS Animals were divided into control (C-2) and ischemia/reperfusion (IR-2) groups of young rats (2-4 months old) and C-12 and IR-12 groups of old rats (12-14 months old). The livers from IR-2 and IR-12 groups were subjected to partial ischemia (60 min), followed by global reperfusion (4 h). Blood samples were obtained during reperfusion (0, 30 and 240 min) to estimate the activity of aminotransferases (ALT, AST). After IR, tumor necrosis factor-α (TNF-α), interleukin-1b (IL-1b), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined in liver homogenates. RESULTS At all points of reperfusion, an increase in aminotransferase activity levels in the ischemic groups was observed; mainly between IR-12 and C-12 rats. The concentration of TNF-α was significantly higher in young animals (in non-ischemic groups: p = 0.09, in ischemic groups: p = 0.05). Under IR conditions, the concentration of IL-1b dropped (p = 0.05). The concentration of MDA was significantly higher in mature animals (in non-ischemic groups: p = 0.09, in ischemic groups: p = 0.05). In ischemic groups an increase in necrosis rate was observed regardless of age. Rats in the IR-12 group showed the most pronounced changes in hepatic architecture, including increased micro- and macrosteatosis and parenchymal cell destruction. CONCLUSIONS The function and structure of mature livers slightly deteriorate with age and these differences are more noticeable under IR conditions.
Collapse
Affiliation(s)
- Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | - Przemysław Kowalski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
26
|
Dugbartey GJ, Redington AN. Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. Am J Physiol Renal Physiol 2018; 314:F319-F328. [DOI: 10.1152/ajprenal.00130.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Contrast-induced nephropathy (CIN) is an important complication following diagnostic radiographic imaging and interventional therapy. It results from administration of intravascular iodinated contrast media (CM) and is currently the third most common cause of hospital-acquired acute kidney injury. CIN is associated with increased morbidity, prolonged hospitalization, and higher mortality. Although the importance of CIN is widely appreciated, and its occurrence can be mitigated by the use of pre- and posthydration protocols and low osmolar instead of high osmolar iodine-containing CM, specific prophylactic therapy is lacking. Remote ischemic preconditioning (RIPC), induced through short cycles of ischemia-reperfusion applied to the limb, is an intriguing new strategy that has been shown to reduce myocardial infarction size in patients undergoing emergency percutaneous coronary intervention. Furthermore, multiple proof-of-principle clinical studies have suggested benefit in several other ischemia-reperfusion syndromes, including stroke. Perhaps somewhat surprisingly, RIPC also is emerging as a promising strategy for CIN prevention. In this review, we discuss current clinical and experimental developments regarding the biology of CIN, concentrating on the pathophysiology of CIN, and cellular and molecular mechanisms by which limb ischemic preconditioning may confer renal protection in clinical and experimental models of CIN.
Collapse
Affiliation(s)
- George J. Dugbartey
- Division of Cardiology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Andrew N. Redington
- Division of Cardiology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
27
|
Li JH, Jia JJ, Shen W, Chen SS, Jiang L, Xie HY, Zhou L, Zheng SS. Optimized postconditioning algorithm protects liver graft after liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2018; 17:32-38. [PMID: 29428101 DOI: 10.1016/j.hbpd.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) causes postoperative complications and influences the outcome of the patients undergoing liver surgery and transplantation. Postconditioning (PostC) is a known manual conditioning to decrease the hepatic IRI. Here we aimed to optimize the applicable PostC protocols and investigate the potential protective mechanism. METHODS Thirty Sprague-Dawley rats were randomly divided into 3 groups: the sham group (n = 5), standard orthotopic liver transplantation group (OLT, n = 5), PostC group (OLT followed by clamping and re-opening the portal vein for different time intervals, n = 20). PostC group was then subdivided into 4 groups according to the different time intervals: (10 s × 3, 10 s × 6, 30 s × 3, 60 s × 3, n = 5 in each subgroup). Liver function, histopathology, malondialdehyde (MDA), myeloperoxidase (MPO), expressions of p-Akt and endoplasmic reticulum stress (ERS) related genes were evaluated. RESULTS Compared to the OLT group, the grafts subjected to PostC algorithm (without significant prolonging the total ischemic time) especially with short stimulus and more cycles (10 s × 6) showed significant alleviation of morphological damage and graft function. Besides, the production of reactive oxidative agents (MDA) and neutrophil infiltration (MPO) were significantly depressed by PostC algorithm. Most of ERS related genes were down-regulated by PostC (10 s × 6), especially ATF4, Casp12, hspa4, ATF6 and ELF2, while p-Akt was up-regulated. CONCLUSIONS PostC algorithm, especially 10 s × 6 algorithm, showed to be effective against rat liver graft IRI. These protective effects may be associated with its antioxidant, inhibition of ERS and activation of p-Akt expression of reperfusion injury salvage kinase pathway.
Collapse
Affiliation(s)
- Jian-Hui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen Shen
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sha-Sha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China
| | - Li Jiang
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hai-Yang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
28
|
Coverdale NS, Hamilton A, Petsikas D, McClure RS, Malik P, Milne B, Saha T, Zelt D, Brown P, Payne DM. Remote Ischemic Preconditioning in High-risk Cardiovascular Surgery Patients: A Randomized-controlled Trial. Semin Thorac Cardiovasc Surg 2018; 30:26-33. [DOI: 10.1053/j.semtcvs.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 11/11/2022]
|
29
|
Osman AS, Osman AH, Kamel MM. Study of the protective effect of ischemic and pharmacological preconditioning on hepatic ischemic reperfusion injury induced in rats. JGH OPEN 2017; 1:105-111. [PMID: 30483545 PMCID: PMC6206986 DOI: 10.1002/jgh3.12018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022]
Abstract
Background and Aim Hepatic ischemia reperfusion injury is the main cause of liver failure following liver surgery, so an effective method is needed to prevent or reduce this hepatic injury. The aim of the present study is to investigate the potential effect of ischemic preconditioning versus pharmacological preconditioning with lisinopril or verapamil for protection against hepatic ischemia reperfusion injury induced in rats. Methods Rats were divided into six groups. Group I served as control untreated. Rats of group II were subjected to laparotomy without induction of ischemia reperfusion. Ischemia reperfusion by ligation of the portal trait for 30 min, followed by reperfusion for 2 h, was performed in rats of groups III-VI. Ischemic preconditioning was performed for rats of group IV before induction of ischemia reperfusion. Lisinopril and verapamil was given daily for 3 days before induction of ischemia reperfusion in groups V and VI, respectively. Serum level of liver transaminases and liver malondialdehyde content were measured, and hepatic histopathological examination was assessed. Results Induction of ischemia reperfusion resulted in significant elevation of liver transaminases and liver malondialdehyde content associated with significant hepatic histopathological injury that were significantly improved by ischemic preconditioning, lisinopril, or verapamil treatment. Verapamil showed the most significant improvement compared with ischemic preconditioning or lisinopril treatment. Conclusion Ischemic preconditioning and pharmacological preconditioning by lisinopril or verapamil can protect against hepatic ischemia reperfusion probably through inhibition of oxidative stress and neutrophil infiltration. The most potent protection is demonstrated by verapamil treatment.
Collapse
Affiliation(s)
- Afaf S Osman
- Department of Medical Pharmacology, Faculty of Medicine Cairo University Giza Egypt
| | - Ahmed H Osman
- Department of Pathology, Faculty of Veterinary Medicine Cairo University Giza Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute Cairo University Giza Egypt
| |
Collapse
|
30
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
31
|
Sawada T, Inoue K, Tanabe D, Kawamoto S, Tsuji T, Tashiro S. Experimental Studies on Protective Effects of FK506 Against Hepatic Ischemia-Reperfusion Injury. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 63:262-9. [PMID: 27644569 DOI: 10.2152/jmi.63.262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purposes; FK506 (strong immunosuppressive agent) was investigated experimentally whether to protect the hepatic IRI. Methods; Warm ischemic experiment using pigs and rats were performed and examined whether FK506 is effective. Results; The results obtained are as follows. 1. Warm ischemia allowed time of the pigs without FK506 was 150 minutes, but as for that of FK506 group, the extension of 30 minutes was got in 180 minutes. 2. Biliary excretion rate of BSP after reperfusion were better in the group of 180 minutes ischemia with FK506 than in without FK506 group. 3. Chemiluminescence intensity in the peripheral neutrophils and adhered and infiltrated leukocytes in the liver were suppressed markedly by FK506. 4. The vascular endothelium with the scanning electron microscope was relatively preserved in the FK506 group comparing to the placebo group on 30 minutes after reperfusion. 5. Stress gastric ulcer was controlled and myeloperoxidase activity in the gastric mucosa was suppressed by FK506. Conclusion; Based on the results of theses experiments, it was suggested that FK506 has a protective effect on IRI by suppressing: the impairment of sinusoidal endothelial cells; the activation of KCs; the disturbance of micro-circulation; oxidative stress; inflammation; and the accumulation of leukocytes. J. Med. Invest. 63: 262-269, August, 2016.
Collapse
|
32
|
Schisantherin A protects against liver ischemia-reperfusion injury via inhibition of mitogen-activated protein kinase pathway. Int Immunopharmacol 2017; 47:28-37. [DOI: 10.1016/j.intimp.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
|
33
|
Vrakas G, Tsalis K, Roidos GN, Christoforidis E, Kouzi-Koliakou K, Lazaridis C, Vaidya A. Synergistic Effect of Ischemic Preconditioning and Antithrombin in Ischemia-Reperfusion Injury. EXP CLIN TRANSPLANT 2017; 15:320-328. [PMID: 28418287 DOI: 10.6002/ect.2015.0331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Our study aimed to determine whether antithrombin plays a synergistic role in accentuating the effects of intestinal ischemic preconditioning. MATERIALS AND METHODS Fifty rats were randomly allocated to 5 groups (10 rats/group) as follows: sham treatment (group 1); ischemia-reperfusion (group 2); ischemic preconditioning followed by ischemia-reperfusion (group 3); antithrombin + ischemia-reperfusion, similar to group 2 but including antithrombin administration (group 4); and antithrombin + ischemic preconditioning, similar to group 3 but including antithrombin administration (group 5). Blood samples and liver specimens were obtained for measurement of cytokines, myeloperoxidase, and malondialdehyde. Liver biopsies were examined by electron microscopy. RESULTS Intestinal ischemia-reperfusion induced a remote hepatic inflammatory response as evidenced by the striking increase of proinflammatory cytokines, myeloperoxidase, and malondialdehyde. Tumor necrosis factor-α levels in group 5 (12.48 ± 0.7 pg/mL) were significantly lower than in group 3 (13.64 ± 0.78 pg/mL; P = .014). Mean interleukin 1β was lower in group 5 (9.52 ± 0.67pg/mL) than in group 3 (11.05 ± 1.9 pg/mL; P > .99). Mean interleukin 6 was also significantly lower in group 5 (17.13 ± 0.54 pg/mL) than in group 3 (23.82 ± 1 pg/mL; P ≤ .001). Myeloperoxidase levels were significantly higher in group 3 (20.52 ± 2.26 U/g) than in group 5 (18.59 ± 1.03 U/g; P = .025). However, malondialdehyde levels did not significantly improve in group 5 (4.55 ± 0.46 μmol) versus group 3 (5.17 ± 0.61 μmol; P = .286). Tumor necrosis factor-α, interleukin 6, and myeloperoxidase findings show that antithrombin administration further attenuated the inflammatory response caused by ischemia-reperfusion, suggesting a synergistic effect with ischemic preconditioning. These findings were confirmed by electron microscopy. CONCLUSIONS The addition of antithrombin to ischemic preconditioning may act to attenuate or prevent damage from ischemia-reperfusion injury by inhibiting the release of cytokines and neutrophil infiltration.
Collapse
Affiliation(s)
- Georgios Vrakas
- From the the Fourth Surgical Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; and the Oxford Transplant Centre, Oxford OX3 7LE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
He Z, Xu N, Qi S. Remote ischemic preconditioning improves the cognitive function of elderly patients following colon surgery: A randomized clinical trial. Medicine (Baltimore) 2017; 96:e6719. [PMID: 28445286 PMCID: PMC5413251 DOI: 10.1097/md.0000000000006719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cognitive function impairment is one of the most common complications in elderly patients after surgery, and an ideal nonpharmacological therapy has not yet been identified. Thus, we hypothesized that remote ischemic preconditioning could improve cognitive functions in elderly patients after surgery and investigated the mechanism underlying this effect. METHODS Ninety patients classified as American Society of Anaesthesiologists (ASA) physical status of 2 or 3 and aged 65 to 75 years who were scheduled for elective colon surgery under general anesthesia were randomly allocated to either a remote ischemic preconditioning group (Group R, n = 45) or a control group (Group C, n = 45). Remote ischemic preconditioning was performed by applying a static pressure of 200 mm Hg with a blood pressure cuff wrapped around the right upper limb for 3 ischemia cycles of 5 minutes each. RESULTS The Montreal Cognitive Assessment (MoCA) scores between the 2 groups were not significantly different on the day before surgery or the seventh day after surgery, but the scores on the first day after surgery (26.87 ± 0.84 vs 25.96 ± 0.85, P < .001) and third day after surgery (27.49 ± 0.66 vs 27.02 ± 0.92, P = .009) were significantly higher for Group R than those for Group C. Moreover, remote ischemic preconditioning markedly decreased the serum concentrations of the interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and S100B proteins compared with the control group (P < .001). CONCLUSION Remote ischemic preconditioning improves postoperative cognitive function in elderly patients following colon surgery. The cognitive protective effects of remote ischemic preconditioning are partially related to the inhibition of inflammation.
Collapse
|
35
|
Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y, Ji X. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157:79-91. [PMID: 28110083 DOI: 10.1016/j.pneurobio.2017.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Adam Hafeez
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fatima Noorulla
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, CA, USA
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
36
|
Sosa RA, Zarrinpar A, Rossetti M, Lassman CR, Naini BV, Datta N, Rao P, Harre N, Zheng Y, Spreafico R, Hoffmann A, Busuttil RW, Gjertson DW, Zhai Y, Kupiec-Weglinski JW, Reed EF. Early cytokine signatures of ischemia/reperfusion injury in human orthotopic liver transplantation. JCI Insight 2016; 1:e89679. [PMID: 27942590 DOI: 10.1172/jci.insight.89679] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND. Orthotopic liver transplant (OLT) is the primary therapy for end-stage liver disease and acute liver failure. However, ischemia/reperfusion injury (IRI) can severely compromise allograft survival. To understand the evolution of immune responses underlying OLT-IRI, we evaluated longitudinal cytokine expression profiles from adult OLT recipients before transplant through 1 month after transplant. METHODS. We measured the expression of 38 cytokines, chemokines, and growth factors in preoperative and postoperative recipient circulating systemic blood (before transplant and 1 day, 1 week, and 1 month after transplant) and intraoperative portal blood (before and after reperfusion) of 53 OLT patients and analyzed this expression in relation to biopsy-proven IRI (n = 26 IRI+; 27 IRI-), clinical liver function tests early (days 1-7) after transplant, and expression of genes encoding cytokine receptors in biopsies of donor allograft taken before and after reperfusion. RESULTS. Bilirubin and arginine transaminase levels early after transplant correlated with IRI. Fourteen cytokines were significantly increased in the systemic and/or portal blood of IRI+ recipients that shifted from innate to adaptive-immune responses over time. Additionally, expression of cognate receptors for 10 of these cytokines was detected in donor organ biopsies by RNAseq. CONCLUSION. These results provide a mechanistic roadmap of the early immunological events both before and after IRI and suggest several candidates for patient stratification, monitoring, and treatment. FUNDING. Ruth L. Kirschstein National Research Service Award T32CA009120, Keck Foundation award 986722, and a Quantitative & Computational Biosciences Collaboratory Postdoctoral Fellowship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Rao
- Department of Pathology and Laboratory Medicine
| | | | - Ying Zheng
- Department of Pathology and Laboratory Medicine
| | - Roberto Spreafico
- Department of Microbiology, Immunology, and Molecular Genetics, and.,Institute for Quantitative and Computational Biosciences, UCLA, California, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and.,Institute for Quantitative and Computational Biosciences, UCLA, California, USA
| | | | | | | | | | | |
Collapse
|
37
|
Anttila V, Haapanen H, Yannopoulos F, Herajärvi J, Anttila T, Juvonen T. Review of remote ischemic preconditioning: from laboratory studies to clinical trials. SCAND CARDIOVASC J 2016; 50:355-361. [PMID: 27595164 DOI: 10.1080/14017431.2016.1233351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In remote ischemic preconditioning (RIPC) short periods of non-lethal ischemia followed by reperfusion of tissue or organ prepare remote tissue or organ to resist a subsequent more severe ischemia-reperfusion injury. The signaling mechanism of RIPC can be humoral communication, neuronal stimulation, systemic modification of circulating immune cells, and activation of hypoxia inducible genes. Despite promising evidence from experimental studies, the clinical effects of RIPC have been controversial. Heterogeneity of inclusion and exclusion criteria and confounding factors such as comedication, anesthesia, comorbidities, and other risk factors may have influenced the efficacy of RIPC. Although the cardioprotective pathways of RIPC are more widely studied, there is also evidence of benefits in CNS, kidney and liver protection. Future research should explore the potential of RIPC, not only in cardiac protection, but also in patients with threatening ischemia of the brain, organ transplantation of the heart, liver and kidney and extensive cardiovascular surgery. RIPC is generally well-tolerated, safe, effective, and easily feasible. It has a great prospect for ischemic protection of the heart and other organs.
Collapse
Affiliation(s)
- Vesa Anttila
- a Heart Center, Turku University Hospital , Turku , Finland
| | - Henri Haapanen
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Fredrik Yannopoulos
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Johanna Herajärvi
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tuomas Anttila
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tatu Juvonen
- c Department of Cardiac Surgery , Heart and Lung Center HUCH , Helsinki , Finland
| |
Collapse
|
38
|
Longo L, Sinigaglia-Fratta LX, Weber GR, Janz-Moreira A, Kretzmann NA, Grezzana-Filho TDJM, Possa-Marroni N, Corso CO, Schmidt-Cerski CT, Reverbel-da-Silveira T, Álvares-da-Silva MR, dos-Santos JL. Hypothermia is better than ischemic preconditioning for preventing early hepatic ischemia/reperfusion in rats. Ann Hepatol 2016; 15:110-20. [PMID: 26626646 DOI: 10.5604/16652681.1184285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Topical hypothermia (TH) and ischemic preconditioning (IPC) are used to decrease I/R injury. The efficacy of isolated or combined use of TH and IPC in the liver regarding inflammation and cytoprotection in early ischemia/reperfusion (I/R) injury needs to be evaluated. MATERIAL AND METHODS Wistar rats underwent 70% liver ischemia for 90 min followed by 120 min of reperfusion. Livers of animals allocated in the sham, normothermic ischemia (NI), IPC, TH, and TH+IPC groups were collected for molecular analyses by ELISA and Western blot, aiming to compare proinflammatory, anti-inflammatory, and antioxidant profiles. RESULTS Compared with NI, TH presented decreased tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12 concentrations and increased IL-10 levels. TH animals displayed lower inducible nitric oxide synthase (iNOS) and higher endothelial nitric oxide synthase (eNOS) expressions. NAD(P)H-quinone oxidoreductase-1(NQO1) expression was also lower with TH. Isolated IPC and NI were similar regarding all these markers. TH+IPC was associated with decreased IL-12 concentration and reduced iNOS and NQO1 expressions, similarly to isolated TH. Expression of Kelch-like ECH-associated protein (Keap)-1 was increased and expression of nuclear and cytosolic nuclear erythroid 2-related factor 2 (Nrf2) was decreased with TH+IPC vs. NI. CONCLUSION TH was the most effective method of protection against early I/R injury. Isolated IPC entailed triggering of second-line antioxidant defense enzymes. Combined TH+IPC seemed to confer no additional advantage over isolated TH in relation to the inflammatory process, but had the advantage of completely avoid second-line antioxidant defense enzymes.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Leila Xavier Sinigaglia-Fratta
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giovana R Weber
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrea Janz-Moreira
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| | | | | | - Norma Possa-Marroni
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| | | | | | | | - Mário R Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge L dos-Santos
- Experimental Laboratory of Hepatology and Gastroenterology,Porto Alegre, Brazil
| |
Collapse
|
39
|
Barros MAP, Vasconcelos PRL, Souza CM, Andrade GM, Moraes MO, Costa PEG, Coelho GR, Garcia JHP. L-Alanyl-Glutamine Attenuates Oxidative Stress in Liver Transplantation Patients. Transplant Proc 2016; 47:2478-82. [PMID: 26518955 DOI: 10.1016/j.transproceed.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury during liver transplantation can cause severe damage to the graft. The objective of this randomized, double-blind study was to evaluate the possible protective effects of L-alanyl-glutamine on the liver graft. METHODS The sample included 33 patients from a liver transplantation service in Northeastern Brazil. Before cold ischemia, the patients received 50 g of L-alanyl-glutamine (treatment group) or saline (control group) through the portal vein. The graft was biopsied at the time of recovery, at the beginning of warm ischemia, and at the end of transplantation to determine malondialdehyde (MDA), heat-shock protein (Hsp)70, nuclear factor kappa-beta (NFkB), superoxide dismutase (SOD), and reduced glutathione (GSH) levels. RESULTS The blood parameters were similar in the two groups. In the treatment group, MDA did not increase at the beginning of cold ischemia and decreased at the end of transplantation. This phenomenon was not observed in the control group. GSH, SOD, Hsp70, and NFkB levels were similar in the two groups. CONCLUSIONS Our findings suggest that preconditioning with L-alanyl-glutamine attenuates the effects of ischemia/reperfusion-related oxidative stress and reduces lipid peroxidation in the grafts of liver transplantation patients.
Collapse
Affiliation(s)
- M A P Barros
- Department of Surgery, HUWC (University Hospital), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - P R L Vasconcelos
- Department of Surgery, HUWC (University Hospital), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - C M Souza
- Department of Physiology and Pharmacology, School of Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - G M Andrade
- Department of Physiology and Pharmacology, School of Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - M O Moraes
- Department of Physiology and Pharmacology, School of Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - P E G Costa
- Department of Surgery, HUWC (University Hospital), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - G R Coelho
- Department of Surgery, HUWC (University Hospital), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - J H P Garcia
- Department of Surgery, HUWC (University Hospital), Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
40
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E. Hind limb perconditioning renoprotection by modulation of inflammatory cytokines after renal ischemia/reperfusion. Ren Fail 2016; 38:655-662. [PMID: 26982574 DOI: 10.3109/0886022x.2016.1155387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose Renal ischemia/reperfusion (I/R) injury is a common clinical problem associated with significant mortality and morbidity. One newly described strategy to reduce this damage is remote perconditioning (RPEC), in which short-time ischemia of a limb during renal ischemia reduces the I/R-induced kidney injury. This study aimed to assess whether RPEC confer protection through changes in pro-inflammatory mediators. Methods Rats were subjected to right nephrectomy and randomized into: sham (no intervention), I/R (subjected to 45-min left renal ischemia) and RPEC group (subjected to four cycles of 5-min I/R of the femoral artery administered during renal ischemia). After 24-h, blood, urine, and kidney samples were collected. Biochemical indicators of renal dysfunction were measured in the cases of Neutrophil gelatinase-associated lipocalin (NGAL), and N-acetyl-B-diglucosaminidase (NAG) activity. Inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor-alpha, TNF-α] expression in the renal tissues as well as Periodic acid-Schiff stained histological sections were evaluated. Results I/R resulted in renal dysfunction, as evidenced by higher renal NGAL expression and urinary NAG activities. This was accompanied by increased TNF-α and IL-6 expressions as well as histological changes in this group. However, RPEC improved renal histology and function compared with the I/R group. Furthermore, the RPEC group showed decreases in TNF-α and IL-6 expression. Conclusions These results suggest that RPEC reduces the dysfunction and injury associated with I/R of the kidney. This technique reduced the pro-inflammatory cytokine in the kidney. RPEC could be a promising strategy against I/R-induced acute kidney injury partly by down-regulation of inflammatory mediators.
Collapse
Affiliation(s)
- Zahra Sedaghat
- a Department of Physiology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mehri Kadkhodaee
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Behjat Seifi
- b Department of Physiology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Eisa Salehi
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
41
|
Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R, Nardo B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33 Suppl 1:S57-70. [PMID: 27255130 DOI: 10.1016/j.ijsu.2016.05.050] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is not only a pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. Hepatic IRI can seriously impair liver function, even producing irreversible damage, which causes a cascade of multiple organ dysfunction. Many factors, including anaerobic metabolism, mitochondrial damage, oxidative stress and secretion of ROS, intracellular Ca(2+) overload, cytokines and chemokines produced by KCs and neutrophils, and NO, are involved in the regulation of hepatic IRI processes. Matrix Metalloproteinases (MMPs) can be an important mediator of early leukocyte recruitment and target in acute and chronic liver injury associated to ischemia. MMPs and neutrophil gelatinase-associated lipocalin (NGAL) could be used as markers of I-R injury severity stages. This review explores the relationship between factors and inflammatory pathways that characterize hepatic IRI, MMPs and current pharmacological approaches to this disease.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Michele Ruggiero
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Giuseppe Gallelli
- Department of Emergency, Pugliese-Ciaccio Hospital, Catanzaro, Italy.
| | - Simone Serafini
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Mazzitelli Maria
- Department of Primary Care, Provincial Health Authority of Vibo Valentia, 89900 Vibo Valentia, Italy.
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy; Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|
42
|
Xue TM, Tao LD, Zhang J, Zhang PJ, Liu X, Chen GF, Zhu YJ. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats. Mol Med Rep 2016; 13:2511-7. [PMID: 26821057 PMCID: PMC4768986 DOI: 10.3892/mmr.2016.4817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury.
Collapse
Affiliation(s)
- Tong-Min Xue
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Li-De Tao
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jie Zhang
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Pei-Jian Zhang
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xia Liu
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Guo-Feng Chen
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yi-Jia Zhu
- Institute of General Surgical Research, Second Affiliated Hospital, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
43
|
Athanasopoulos P, Mastoraki A, Papalois A, Nastos C, Kondi-Pafiti A, Kostopanagiotou G, Smyrniotis V, Arkadopoulos N. Expression of Inflammatory and Regenerative Genes in a Model of Liver Ischemia/Reperfusion and Partial Hepatectomy. J INVEST SURG 2015; 29:67-73. [DOI: 10.3109/08941939.2015.1060280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
YAN YICHAO, LI GUANGYING, TIAN XIAOFENG, YE YINGJIANG, GAO ZHIDONG, YAO JIHONG, ZHANG FENG, WANG SHAN. Ischemic preconditioning increases GSK-3β/β-catenin levels and ameliorates liver ischemia/reperfusion injury in rats. Int J Mol Med 2015; 35:1625-32. [DOI: 10.3892/ijmm.2015.2153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/06/2015] [Indexed: 11/05/2022] Open
|
45
|
Jia J, Li J, Jiang L, Zhang J, Chen S, Wang L, Zhou Y, Xie H, Zhou L, Zheng S. Protective effect of remote limb ischemic perconditioning on the liver grafts of rats with a novel model. PLoS One 2015; 10:e0121972. [PMID: 25785455 PMCID: PMC4364967 DOI: 10.1371/journal.pone.0121972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/05/2015] [Indexed: 12/16/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) is a known manual conditioning to decrease ischemic reperfusion injury (IRI) but not increase ischemic time. Here we tried to establish a rat RIC model of liver transplantation (LT), optimize the applicable protocols and investigate the protective mechanism. Methods The RIC model was developed by a standard tourniquet. Sprague-Dawley rats were assigned randomly to the sham operated control (N), standard rat liver transplantation (OLT) and RIC groups. According to the different protocols, RIC group was divided into 3 subgroups (10min×3, n = 6; 5min×3, n = 6; 1min×3, n = 6)respectively. Serum transaminases (ALT, AST), creatine kinase (CK), histopathologic changes, malondialdehyde (MDA), myeloperoxidase (MPO) and expressions of p-Akt were evaluated. Results Compared with the OLT group, the grafts subjected to RIC 5min*3 algorithm showed significant reduction of morphological damage and improved the graft function. Also, production of reactive oxygen species (MDA) and neutrophil accumulation (MPO) were markedly depressed and p-Akt was upregulated. Conclusion In conclusion, we successfully established a novel model of RIC in rat LT, the optimal RIC 5min*3 algorithm seemed to be more efficient to alleviate IRI of the liver graft in both functional and morphological categories, which due to its antioxidative, anti-inflammation activities and activating PI3K Akt pathway.
Collapse
Affiliation(s)
- Junjun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Li
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfei Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
46
|
Suyavaran A, Ramamurthy C, Mareeswaran R, Subastri A, Lokeswara Rao P, Thirunavukkarasu C. TNF-α suppression by glutathione preconditioning attenuates hepatic ischemia reperfusion injury in young and aged rats. Inflamm Res 2014; 64:71-81. [PMID: 25420731 DOI: 10.1007/s00011-014-0785-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Hepatic ischemia reperfusion (I/R) stimulates Kupffer cells and initiates injury through tumor necrosis factor-α (TNF-α) upregulation. Aim of this study was to compare the variable effects of reduced glutathione (GSH) pre-treatment on I/R liver injury in young and aged rats. METHODS Wistar male rats were sorted into young (groups I-III) and aged (groups IV-VI). All groups except sham (groups I and IV) were subjected to 90-min ischemia and 2-h reperfusion. The treatment groups received 200 mg/kg bwt (groups III and VI) of GSH, 30 min prior to I/R. Variable effects of GSH were studied by transaminase activities, thiobarbituric acid-reactive substances (TBARS), GSH level, GSH/oxidized GSH (GSSG) ratio, TNF-α level, apoptotic markers and confirmed by histopathological observations. RESULTS Our findings revealed that I/R inflicted more liver damage in aged rats than young rats. The GSH treatment prior to surgery significantly lowered the serum transaminase activities, hepatic TBARS level and effectively restored the GSH/GSSG ratio in both young and aged rats more remarkably in the mitochondria. Western analysis depicted that the GSH treatment effectively suppressed TNF-α expression and apoptotic markers in both young and aged rats. These findings were further confirmed by terminal deoxynucleotide transferase dUTP nick end labeling assay and histopathological observations of liver sections of young and aged rats. CONCLUSION Restoration of GSH/GSSG ratio through GSH pre-conditioning inhibits TNF-α and apoptosis in hepatic I/R injury. Hence, GSH pre-conditioning may be utilized in both young and aged individuals during liver transplantation/surgery for better post-operative outcomes.
Collapse
Affiliation(s)
- Arumugam Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | | | | | | | | | | |
Collapse
|
47
|
Oberkofler CE, Limani P, Jang JH, Rickenbacher A, Lehmann K, Raptis DA, Ungethuem U, Tian Y, Grabliauskaite K, Humar R, Graf R, Humar B, Clavien PA. Systemic protection through remote ischemic preconditioning is spread by platelet-dependent signaling in mice. Hepatology 2014; 60:1409-17. [PMID: 24700614 DOI: 10.1002/hep.27089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Remote ischemic preconditioning (RIPC), the repetitive transient mechanical obstruction of vessels at a limb remote to the operative site, is a novel strategy to mitigate distant organ injury associated with surgery. In the clinic, RIPC has demonstrated efficacy in protecting various organs against ischemia reperfusion (IR), but a common mechanism underlying the systemic protection has not been identified. Here, we reasoned that protection may rely on adaptive physiological responses toward local stress, as is incurred through RIPC. Standardized mouse models of partial hepatic IR and of RIPC to the femoral vascular bundle were applied. The roles of platelets, peripheral serotonin, and circulating vascular endothelial growth factor (Vegf) were studied in thrombocytopenic mice, Tph1(-) (/) (-) mice, and through neutralizing antibodies, respectively. Models of interleukin-10 (Il10) and matrix metalloproteinase 8 (Mmp8) deficiency were used to assess downstream effectors of organ protection. The protection against hepatic IR through RIPC was dependent on platelet-derived serotonin. Downstream of serotonin, systemic protection was spread through up-regulation of circulating Vegf. Both RIPC and serotonin-Vegf induced differential gene expression in target organs, with Il10 and Mmp8 displaying consistent up-regulation across all organs investigated. Concerted inhibition of both molecules abolished the protective effects of RIPC. RIPC was able to mitigate pancreatitis, indicating that it can protect beyond ischemic insults. CONCLUSIONS We have identified a platelet-serotonin-Vegf-Il10/Mmp8 axis that mediates the protective effects of RIPC. The systemic action, the conservation of RIPC effects among mice and humans, and the protection beyond ischemic insults suggest that the platelet-dependent axis has evolved as a preemptive response to local stress, priming the body against impending harm.
Collapse
Affiliation(s)
- Christian E Oberkofler
- Laboratory of the Swiss Hepato-Pancreatico-Biliary (HPB) Center, Department of Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tao T, Chen F, Bo L, Xie Q, Yi W, Zou Y, Hu B, Li J, Deng X. Ginsenoside Rg1 protects mouse liver against ischemia–reperfusion injury through anti-inflammatory and anti-apoptosis properties. J Surg Res 2014; 191:231-8. [DOI: 10.1016/j.jss.2014.03.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
49
|
Guan LY, Fu PY, Li PD, Li ZN, Liu HY, Xin MG, Li W. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J Gastrointest Surg 2014; 6:122-128. [PMID: 25068009 PMCID: PMC4110529 DOI: 10.4240/wjgs.v6.i7.122] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/26/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a pathophysiological event post liver surgery or transplantation and significantly influences the prognosis of liver function. The mechanisms of IRI remain unclear, and effective methods are lacking for the prevention and therapy of IRI. Several factors/pathways have been implicated in the hepatic IRI process, including anaerobic metabolism, mitochondria, oxidative stress, intracellular calcium overload, liver Kupffer cells and neutrophils, and cytokines and chemokines. The role of nitric oxide (NO) in protecting against liver IRI has recently been reported. NO has been found to attenuate liver IRI through various mechanisms including reducing hepatocellular apoptosis, decreasing oxidative stress and leukocyte adhesion, increasing microcirculatory flow, and enhancing mitochondrial function. The purpose of this review is to provide insights into the mechanisms of liver IRI, indicating the potential protective factors/pathways that may help to improve therapeutic regimens for controlling hepatic IRI during liver surgery, and the potential therapeutic role of NO in liver IRI.
Collapse
|
50
|
Remote ischemic preconditioning prevents lipopolysaccharide-induced liver injury through inhibition of NF-κB activation in mice. J Anesth 2014; 28:898-905. [DOI: 10.1007/s00540-014-1850-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|