1
|
Sheng R, Li Y, Wu Y, Liu C, Wang W, Han X, Li Y, Lei L, Jiang X, Zhang Y, Zhang Y, Li S, Hong B, Liu C, Xu Y, Si S. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed Pharmacother 2024; 172:116220. [PMID: 38308968 DOI: 10.1016/j.biopha.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved β-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Ren Sheng
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Yinghong Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing 100050, China.
| |
Collapse
|
2
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
3
|
Cheng J, Cai W, Zong S, Yu Y, Wei F. Metabolite transporters as regulators of macrophage polarization. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:13-25. [PMID: 34851450 DOI: 10.1007/s00210-021-02173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Macrophages are myeloid immune cells, present in virtually all tissues which exhibit considerable functional plasticity and diversity. Macrophages are often subdivided into two distinct subsets described as classically activated (M1) and alternatively activated (M2) macrophages. It has recently emerged that metabolites regulate the polarization and function of macrophages by altering metabolic pathways. These metabolites often cannot freely pass the cell membrane and are therefore transported by the corresponding metabolite transporters. Here, we reviewed how glucose, glutamate, lactate, fatty acid, and amino acid transporters are involved in the regulation of macrophage polarization. Understanding the interactions among metabolites, metabolite transporters, and macrophage function under physiological and pathological conditions may provide further insights for novel drug targets for the treatment of macrophage-associated diseases. In Brief Recent studies have shown that the polarization and function of macrophages are regulated by metabolites, most of which cannot pass freely through biofilms. Therefore, metabolite transporters required for the uptake of metabolites have emerged seen as important regulators of macrophage polarization and may represent novel drug targets for the treatment of macrophage-associated diseases. Here, we summarize the role of metabolite transporters as regulators of macrophage polarization.
Collapse
Affiliation(s)
- Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Weiwei Cai
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, Donghai Avenue, Bengbu, 2600233030, Anhui, China. .,Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, 2600 Donghai Avenue, Bengbu, 233030, Anhui, China.
| |
Collapse
|
4
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017; 107:S1537-1891(17)30171-4. [PMID: 29056472 DOI: 10.1016/j.vph.2017.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 is also expressed in macrophages, smooth muscle cells and platelets. Following internalization of oxLDL, LOX-1 initiates a vicious cycle from activation of pro-inflammatory signaling pathways, thus promoting an increased reactive oxygen species formation and secretion of pro-inflammatory cytokines. LOX-1 plays a pivotal role in the development of endothelial dysfunction, foam cell and advanced lesions formation as well as in myocardial ischemia. Furthermore, it is known that LOX-1 plays a pivotal role in mitochondrial DNA damage, vascular cell apoptosis, and autophagy. A large number of studies provide evidence of a LOX-1's role in endothelial dysfunction, hypertension, diabetes, and obesity. In addition, novel insights into LOX-1 ligands and the activated signaling pathways have been gained. Recent studies have shown an interaction of LOX-1 with microRNA's, thus providing novel tools to regulate LOX-1 function. Because LOX-1 is increased in atherosclerotic plaques and contributes to endothelial dysfunction, several compounds were tested in vivo and in vitro to modulate the LOX-1 expression in therapeutic approaches.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Lin J, Liu Q, Zhang H, Huang X, Zhang R, Chen S, Wang X, Yu B, Hou J. C1q/Tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways. Oncotarget 2017; 8:82541-82557. [PMID: 29137283 PMCID: PMC5669909 DOI: 10.18632/oncotarget.19657] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophage inflammation and foam cell formation are critical events during the initiation and development of atherosclerosis (AS). C1q/tumor necrosis factor-related protein-3 (CTRP3) is a novel adipokine with anti-inflammatory and cardioprotection properties; however, little is known regarding the influence of CTRP3 on AS. As macrophages play a key role in AS, this study investigated the effects of CTRP3 on macrophage lipid metabolism, inflammatory reactions, and phenotype transition, as well as underlying mechanisms, to reveal the relationship between CTRP3 and AS. CTRP3 reduced the number of lipid droplets, lowered cholesteryl ester (CE), total cholesterol (TC), and free cholesterol (FC) levels, reduced the CE/TC ratio, and dose-dependently inhibited TNFα, IL-6, MCP-1, MMP-9 and IL-1β release in lipopolysaccharide (LPS)-stimulated THP-1 macrophages and mouse peritoneal macrophages. Pretreatment with CTRP3 effectively increased macrophage transformation to M2 macrophages rather than M1 macrophages. Western blotting showed that the specific NF-κB pathway inhibitor ammonium pyrrolidine dithiocarbamate (PDTC) or siRNA targeting PPARγ/LXRα markedly strengthened or abolished the above-mentioned effects of CTRP3, respectively. These results show that CTRP3 inhibits TLR4-NF-κB pro-inflammatory pathways but activates the PPARγ-LXRα-ABCA1/ABCG1 cholesterol efflux pathway. Taken together, CTRP3 participates in anti-lipid accumulation, anti-inflammation and macrophage phenotype conversion via the TLR4-NF-κB and PPARγ-LXRα-ABCA1/ABCG1 pathways and, thus, may have anti-atherosclerotic properties.
Collapse
Affiliation(s)
- Jiale Lin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qi Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hui Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shuyuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
7
|
Lukic A, Larssen P, Fauland A, Samuelsson B, Wheelock CE, Gabrielsson S, Radmark O. GM-CSF- and M-CSF-primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures. FASEB J 2017. [PMID: 28637652 DOI: 10.1096/fj.201700319r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
M1 and M2 activated macrophages (Mϕs) have different roles in inflammation. Because pathogens may first encounter resting cells, we investigated lipid mediator profiles prior to full activation. Human monocytes were differentiated with granulocyte Mϕ colony-stimulating factor (GM-CSF) or Mϕ colony-stimulating factor (M-CSF), which are known to prime toward M1 or M2 phenotypes, respectively. Lipid mediators released during resting conditions and produced in response to bacterial stimuli (LPS/N-formylmethionyl-leucyl-phenylalanine or peptidoglycan) were quantified by liquid chromatography-mass spectrometry. In resting conditions, both Mϕ phenotypes released primarily proresolving lipid mediators (prostaglandin E2 metabolite, lipoxin A4, and 18-hydroxyeicosapentaenoic acid). A striking shift toward proinflammatory eicosanoids was observed when the same cells were exposed (30 min) to bacterial stimuli: M-CSF Mϕs produced considerably more 5-lipoxygenase products, particularly leukotriene C4, potentially linked to M2 functions in asthma. Prostaglandins were formed by both Mϕ types. In the M-CSF cells, there was also an enhanced release of arachidonic acid and activation of cytosolic phospholipase A2 However, GM-CSF cells expressed higher levels of 5-lipoxygenase and 5-lipoxygenase-activating protein, and in ionophore incubations these cells also produced the highest levels of 5-hydroxyeicosatetraenoic acid. In summary, GM-CSF and M-CSF Mϕs displayed similar proresolving lipid mediator formation in resting conditions but shifted toward different proinflammatory eicosanoids upon bacterial stimuli. This demonstrates that preference for specific eicosanoid pathways is primed by CSFs before full M1/M2 activation.-Lukic, A., Larssen, P., Fauland, A., Samuelsson, B., Wheelock, C. E., Gabrielsson, S., Radmark, O. GM-CSF- and M-CSF-primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures.
Collapse
Affiliation(s)
- Ana Lukic
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pia Larssen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Olof Radmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|
8
|
Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun 2017; 482:849-856. [DOI: 10.1016/j.bbrc.2016.11.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
|
9
|
Cai Y, Lydic TA, Turkette T, Reid GE, Olson LK. Impact of alogliptin and pioglitazone on lipid metabolism in islets of prediabetic and diabetic Zucker Diabetic Fatty rats. Biochem Pharmacol 2015; 95:46-57. [PMID: 25801003 DOI: 10.1016/j.bcp.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Prolonged exposure of pancreatic beta (β) cells to elevated glucose and free fatty acids (FFA) as occurs in type 2 diabetes results in loss of β cell function and survival. In Zucker Diabetic Fatty (ZDF) rats, β cell failure is associated with increased triacylglyceride (TAG) synthesis and disruption of the glycerolipid/FFA (GL/FFA) cycle, a critical arm of glucose-stimulated insulin secretion (GSIS). The aim of this study was to determine the impact of activation of PPARγ and increased incretin action via dipeptidyl-peptidase inhibition using pioglitazone and/or alogliptin, respectively, on islet lipid metabolism in prediabetic and diabetic ZDF rats. Transition of control prediabetic ZDF rats to diabetes was associated with reduced plasma insulin levels, reduced islet insulin content and GSIS, reduced stearoyl-CoA desaturase 2 (SCD 2) expression, and increased islet TAG, diacylglyceride (DAG) and ceramides species containing saturated FA. Treatment of prediabetic ZDF rats with a combination of pioglitazone and alogliptin, but not individually, prevented the transition to diabetes and was associated with marked lowering of islet TAG and DAG levels. Pioglitazone and alogliptin, however, did not restore SCD2 expression, the degree of FA saturation in TAG, DAG or ceramides, islet insulin content, or lower ceramide levels. These findings are consistent with activation of PPARγ and increased incretin action working in concert to restore GL/FFA cycle in β cells of ZDF rats. Restoration of the GL/FFA cycle without correcting islet FA desaturation, production of islet ceramides, and/or insulin sensitivity, however, may place these islets at risk for β cell failure.
Collapse
Affiliation(s)
- Ying Cai
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Todd A Lydic
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Thomas Turkette
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Gavin E Reid
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA.
| | - L Karl Olson
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Zhang H, Gao Y, Qiao P, Zhao F, Yan Y. Fenofibrate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR‐α/PI3‐K pathway. Int J Dev Neurosci 2014; 38:223-31. [DOI: 10.1016/j.ijdevneu.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Hua Zhang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ying Gao
- Special WardsThe Affiliated Children's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Pei‐feng Qiao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Feng‐li Zhao
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yong Yan
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
11
|
Pioglitazone reduces lipid droplets in cholesterolosis of the gallbladder by increasing ABCA1 and NCEH1 expression. Mol Cell Biochem 2014; 399:7-15. [DOI: 10.1007/s11010-014-2225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/27/2014] [Indexed: 01/12/2023]
|
12
|
Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One 2014; 9:e87327. [PMID: 24505284 PMCID: PMC3914821 DOI: 10.1371/journal.pone.0087327] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/19/2013] [Indexed: 12/30/2022] Open
Abstract
Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology.
Collapse
|
13
|
Fan B, Gu JQ, Yan R, Zhang H, Feng J, Ikuyama S. High glucose, insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages. Metabolism 2013; 62:1168-79. [PMID: 23566650 DOI: 10.1016/j.metabol.2013.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Perilipin (PLIN) 3, an intracellular lipid droplet (LD)-associated protein, is implicated in foam cell formation. Since metabolic derangements found in metabolic syndrome, such as high serum levels of glucose, insulin and free fatty acids (FFAs), are major risk factors promoting atherosclerosis, we investigated whether PLIN3 expression is affected by glucose, insulin and oleic acid (OA) using RAW264.7 cells. METHODS Real-time PCR and Western blotting were performed to detect PLIN3 or PLIN2 expression. Oil-red O staining and Lipid Analysis were employed to measure cellular content of triacylglycerides (TAG) and cholesterol. RESULTS PLIN3 mRNA was stimulated by high glucose or insulin concentrations individually, but not by OA. A combination of any two factors did not enhance PLIN3 expression any more than that evoked by glucose alone at 24h. Interestingly, however, simultaneous addition of all three factors synergistically enhanced the PLIN3 expression. This synergistic effect was not apparent for PLIN2 mRNA expression. Inhibitors of Src family tyrosine kinase and/or phosphatidylinositol 3-kinase, both of which are activated by insulin and FFA signaling, partially suppressed PLIN3 expression induced by the combination of the three factors. While simultaneous addition of glucose, insulin and OA remarkably increased the cellular content of TAG and cholesterol, knocking-down of PLIN3 predominantly reduced TAG content. CONCLUSIONS These results indicate that PLIN3 expression is synergistically stimulated by high glucose, insulin and FFA concentrations, in parallel with TAG accumulation in macrophages. This finding raises new evidence of PLIN3 involvement in conversion of macrophages into foam cells.
Collapse
Affiliation(s)
- Bin Fan
- Department of Neurology, Shengjing Hospital, China Medical University, Shenyang 11004, China
| | | | | | | | | | | |
Collapse
|
14
|
Maurya MR, Gupta S, Li X, Fahy E, Dinasarapu AR, Sud M, Brown HA, Glass CK, Murphy RC, Russell DW, Dennis EA, Subramaniam S. Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. J Lipid Res 2013; 54:2525-42. [PMID: 23776196 DOI: 10.1194/jlr.m040212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of macrophage biology have been significantly advanced by the availability of cell lines such as RAW264.7 cells. However, it is unclear how these cell lines differ from primary macrophages such as thioglycolate-elicited peritoneal macrophages (TGEMs). We used the inflammatory stimulus Kdo2-lipid A (KLA) to stimulate RAW264.7 and TGEM cells. Temporal changes of lipid and gene expression levels were concomitantly measured and a systems-level analysis was performed on the fold-change data. Here we present a comprehensive comparison between the two cell types. Upon KLA treatment, both RAW264.7 and TGEM cells show a strong inflammatory response. TGEM (primary) cells show a more rapid and intense inflammatory response relative to RAW264.7 cells. DNA levels (fold-change relative to control) are reduced in RAW264.7 cells, correlating with greater downregulation of cell cycle genes. The transcriptional response suggests that the cholesterol de novo synthesis increases considerably in RAW264.7 cells, but 25-hydroxycholesterol increases considerably in TGEM cells. Overall, while RAW264.7 cells behave similarly to TGEM cells in some ways and can be used as a good model for inflammation- and immune function-related kinetic studies, they behave differently than TGEM cells in other aspects of lipid metabolism and phenotypes used as models for various disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Mano R Maurya
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Magliano DC, Bargut TCL, de Carvalho SN, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 2013; 8:e64258. [PMID: 23700465 PMCID: PMC3658968 DOI: 10.1371/journal.pone.0064258] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/13/2013] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma by Bezafibrate (BZ) could attenuate hepatic and white adipose tissue (WAT) abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS C57BL/6 female mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 49% lipids) diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet) started at 12 weeks of age and was maintained for three weeks. RESULTS The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1) in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.
Collapse
Affiliation(s)
- D'Angelo Carlo Magliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Abstract
Normally macrophages localized in the arterial vessel wall perform the "reverse transfer" of cholesterol, which includes endocytosis of low density lipoproteins (LDL), cholesterol transfer to newly formed high density lipoprotein particles, and their following elimination by the liver. The homeostatic function of macrophages for cholesterol involves a system of lipid sensors. Oxysterol sensors LXRs, oxysterol and cholesterol sensors INSIG and SCAP acting through controlled transcription factors SREBP, as well as sensors for oxidized fatty acids and their derivatives, PPAR, are the best studied. Activation of LXR and PPAR is also accompanied by inhibition of macrophage functions related to inflammation. Accumulation of oxidized and otherwise modified LDL in the subendothelial space induced by endothelium injury, infection, or other pathogenic factors instead of stimulation of the homeostatic functions of macrophages leads to their weakening with a concurrent increase in the inflammatory potential of these cells. These shifts seem to drive the transformation of macrophages into foam cells, which form the core of sclerotic plaques. The intervention of another lipid sensor, TLR4, can trigger such a radical change in the functional activity of macrophages. The interaction of modified LDL with this signaling receptor results in inhibition of the homeostatic oxysterol signaling, induction of additional LDL transporters, and activation of the phagocytic function of macrophages. The re-establishment of cholesterol homeostasis under these circumstances can be achieved by administration of LXR and PPARgamma agonists. Therefore, it is urgent to design ligands with reduced side effects.
Collapse
|
17
|
Vangaveti V, Baune BT, Kennedy RL. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab 2010; 1:51-60. [PMID: 23148150 PMCID: PMC3475286 DOI: 10.1177/2042018810375656] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydroxyoctadecadienoic acids (HODEs) are stable oxidation products of linoleic acid, the generation of which is increased where oxidative stress is increased, such as in diabetes. In early atherosclerosis, 13-HODE is generated in macrophages by 15-lipoxygenase-1. This enhances protective mechanisms through peroxisome proliferator-activated receptor (PPAR)-g activation leading to increased clearance of lipid and lipid-laden cells from the arterial wall. In later atherosclerosis, both 9-HODE and 13-HODE are generated nonenzymatically. At this stage, early protective mechanisms are overwhelmed and pro-inflammatory effects of 9-HODE, acting through the receptor GPR132, and increased apoptosis predominate leading to a fragile, acellular plaque. Increased HODE levels thus contribute to atherosclerosis progression and the risk of clinical events such as myocardial infarction or stroke. Better understanding of the role of HODEs may lead to new pharmacologic approaches to modulate their production or action, and therefore lessen the burden of atherosclerotic disease in high-risk patients.
Collapse
Affiliation(s)
- Venkat Vangaveti
- Venkat Vangaveti, MSc Department of Medicine, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Bernhard T. Baune
- Bernhard T. Baune, PhD, MD, MPH, FRANZCP Department of Psychiatry and Psychiatric Neuroscience, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - R. Lee Kennedy
- Correspondence to: R. Lee Kennedy, MD, PhD, FRCP, FRACP Department of Medicine, School of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
18
|
Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S, Fukutomi T, Kimura G, Yokoyama S. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 2009; 205:413-9. [PMID: 19201410 PMCID: PMC2790138 DOI: 10.1016/j.atherosclerosis.2009.01.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/28/2022]
Abstract
Expression of ATP binding cassette transporter A1 (ABCA1), a major regulator of high density lipoprotein (HDL) biogenesis, is known to be up-regulated by the transcription factor liver X receptor (LXR) alpha, and expression is further enhanced by activation of the peroxisome proliferator activated receptors (PPARs). We investigated this complex regulatory network using specific PPAR agonists: four fibrates (fenofibrate, bezafibrate, gemfibrozil and LY518674), a PPAR delta agonist (GW501516) and a PPAR gamma agonist (pioglitazone). All of these compounds increased the expression of LXRs, PPARs and ABCA1 mRNAs, and associated apoA-I-mediated lipid release in THP-1 macrophage, WI38 fibroblast and mouse fibroblast. When mouse fibroblasts lacking expression of PPAR alpha were examined, the effects of fenofibrate and LY518674 were markedly diminished while induction by other ligands were retained. The PPAR alpha promoter was activated by all of these compounds in an LXR alpha-dependent manner, and partially in a PPAR alpha-dependent manner, in mouse fibroblast. The LXR responsive element (LXRE)-luciferase activity was enhanced by all the compounds in an LXR alpha-dependent manner in mouse fibroblast. This activation was exclusively PPAR alpha-dependent by fenofibrate and LY518674, but nonexclusively by the others. We conclude that PPARs and LXRs are involved in the regulation of ABCA1 expression and HDL biogenesis in a cooperative signal transduction pathway.
Collapse
Affiliation(s)
- Masaki Ogata
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
- Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Mohammad Anwar Hossain
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Nobukatsu Akita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
- Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Bart Staels
- Institut Pasteur de Lille, Lille F-59019, France
- INSERM UMR 545, Lille F-509191, France
- Université de Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques et Faculté de Médecine, Lille F59006, France
| | - Shogo Suzuki
- Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuya Fukutomi
- Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Genjiro Kimura
- Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Yokoyama
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
19
|
Gutgesell A, Wen G, König B, Koch A, Spielmann J, Stangl GI, Eder K, Ringseis R. Mouse carnitine-acylcarnitine translocase (CACT) is transcriptionally regulated by PPARalpha and PPARdelta in liver cells. Biochim Biophys Acta Gen Subj 2009; 1790:1206-16. [PMID: 19577614 DOI: 10.1016/j.bbagen.2009.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatic PPARalpha acts as the primary mediator of the adaptive response to fasting by upregulation of a number of genes involved in fatty acid catabolism. Whether carnitine-acylcarnitine translocase (CACT), which mediates the import of acylcarnitines into the mitochondrial matrix for subsequent beta-oxidation of fatty acid moieties, is also regulated by PPARalpha in the liver has not yet been investigated. METHODS AND RESULTS Herein, we observed that hepatic mRNA abundance of CACT was increased by both, fasting and treatment with PPARalpha agonist WY-14,643 in wild-type mice but not PPARalpha-knockout mice (P<0.05). Cell culture experiments revealed that CACT mRNA abundance was higher in liver cells treated with either WY-14,643 or PPARdelta agonist GW0742, but not with PPARgamma agonist troglitazone (TGZ) than in control cells (P<0.05). In addition, reporter assays revealed activation of mouse CACT promoter by WY-14,643 and GW0742, but not TGZ. Moreover, deletion and mutation analyses of CACT promoter and 5'-UTR revealed one functional PPRE in the 5'-UTR of mouse CACT. GENERAL SIGNIFICANCE CACT is upregulated by PPARalpha and PPARdelta, probably by binding to a functional PPRE at position +45 to +57 relative to the transcription start site. The upregulation of CACT by PPARalpha and PPARdelta, which are both important for the regulation of fatty acid oxidation in tissues during fasting, may increase the import of acylcarnitine into the mitochondrial matrix during fasting.
Collapse
Affiliation(s)
- Anke Gutgesell
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Vijay SK, Mishra M, Kumar H, Tripathi K. Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 2009; 46:27-33. [PMID: 18758684 DOI: 10.1007/s00592-008-0054-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to assess the effects of PPAR-gamma agonists (pioglitazone and rosiglitazone) on mediators of endothelial dysfunction and markers of angiogenesis in patients with type-2 diabetes. Pioglitazone group showed favorable reductions in serum total cholesterol, triglycerides, LDL cholesterol, VLDL cholesterol and increase in HDL cholesterol as compared to rosiglitazone group, after 16 weeks of treatment and also with control group. There was significant reduction of CRP level in pioglitazone and rosiglitazone group. The level of serum TNF-alpha decreased significantly in pioglitazone and mildly decreased in rosiglitazone group. The level of VEGF, IL-8 and Angiogenin were increased in pioglitazone than rosiglitazone group. There were no significant changes observed in the serum angiogenin and IL-8 levels in the control group. Pioglitazone and rosiglitazone therapy in type-2 diabetes subjects have additional benefits of reducing mediators of endothelial dysfunction. Increase in angiogenesis markers in patients receiving pioglitazone could have variable effects in diabetic nephropathy and retinopathy as there may be increased vascular neogenesis. Pioglitazone has advantage over rosiglitazone in lowering lipid and proinflammatory cytokines.
Collapse
Affiliation(s)
- Sudarshan K Vijay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
21
|
Yee JK, Mao CS, Hummel HS, Lim S, Sugano S, Rehan VK, Xiao G, Lee WNP. Compartmentalization of stearoyl-coenzyme A desaturase 1 activity in HepG2 cells. J Lipid Res 2008; 49:2124-34. [PMID: 18599738 DOI: 10.1194/jlr.m700600-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the conversion of stearate (18:0) to oleate (18:1n-9) and of palmitate (16:0) to palmitoleate (16:1), which are key steps in triglyceride synthesis in the fatty acid metabolic network. This study investigated the role of SCD1 in fatty acid metabolism in HepG2 cells using SCD1 inhibitors and stable isotope tracers. HepG2 cells were cultured with [U-(13)C]stearate, [U-(13)C]palmitate, or [1,2-(13)C]acetate and (1) DMSO, (2) compound CGX0168 or CGX0290, or (3) trans-10,cis-12 conjugated linoleic acid (CLA). (13)C incorporation into fatty acids was determined by GC-MS and desaturation indices calculated from the respective ion chromatograms. FAS, SCD1, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor gamma mRNA levels were assessed by semiquantitative RT-PCR. The addition of CGX0168 and CGX0290 decreased the stearate and palmitate desaturation indices in HepG2 cells. CLA led to a decrease in the desaturation of stearate only, but not palmitate. Comparison of desaturation indices based on isotope enrichment ratios differed, depending on the origin of saturated fatty acid. SCD1 gene expression was not affected in any group. In conclusion, the differential effects of SCD1 inhibitors and CLA on SCD1 activity combined with the dependence of desaturation indices on the source of saturated fatty acid strongly support the compartmentalization of desaturation systems. The effects of SCD1 inhibition on fatty acid composition in HepG2 cells occurred through changes in the dynamics of the fatty acid metabolic network and not through transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Jennifer K Yee
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu Y, Wang Q, Cook TJ, Knipp GT. Effect of Placental Fatty Acid Metabolism and Regulation by Peroxisome Proliferator Activated Receptor on Pregnancy and Fetal Outcomes. J Pharm Sci 2007; 96:2582-606. [PMID: 17549724 DOI: 10.1002/jps.20973] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acids, particularly the omega-3 and omega-6 essential fatty acids (EFAs), are considered critical nutritional sources for the developing fetus. The placenta governs the fetal supply of fatty acids via two processes: transport and metabolism. Placental fatty acid metabolism can play a critical role in guiding pregnancy and fetal outcome. EFAs can be metabolized to important cell signaling molecules in placenta by several major isoform families including: the Cytochrome P450 subfamily 4A (CYP4A); Cyclooxygenases (COXs); and Lipoxygenases (LOXs). Peroxisome proliferator-activated nuclear receptors (PPARs) have been demonstrated to regulate a number of placental fatty acid/lipid homeostasis-related proteins (e.g., metabolizing enzymes and transporters). The present review summarizes research on the molecular and functional relevance of fatty acid metabolizing enzymes and the role of PPARs in regulating their expression in the mammalian placenta. Elucidating the pathways of placental fatty acid metabolism and the regulatory processes governing these pathways is critical for advancing our understanding of the role of placenta in supplying EFAs to the developing fetus and the potential implications on pregnancy and fetal outcome. A more complete understanding of placental fatty acid disposition may also provide a basis for nutritional/pharmacological interventions to ameliorate the risk of adverse pregnancy and/or fetal outcomes.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Numerous epidemiological studies have identified high-density lipoprotein cholesterol (HDL) to be an independent risk factor for coronary heart disease (CHD). HDL is an emerging therapeutic target that could rival the impact of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors (statins) on LDL and CHD risk reduction. HDL metabolism, HDL kinetics, the concentration of various HDL subclasses, and other genetic factors affecting HDL functionality may all contribute to the anti-atherogenic properties of HDL; thus, standard plasma measurement may not capture the full range of HDL effects. Algorithms have been suggested to treat low HDL levels in subgroups of patients; however, no formal HDL target goals or treatment guidelines have been implemented as there is a lack of strong clinical evidence to support effective pharmacologic therapy for primary risk reduction. Available therapies have a modest impact on serum HDL levels; however, emerging therapies could have a more significant influence.
Collapse
Affiliation(s)
- Jeffrey J Link
- Department of Internal Medicine, Parkland Memorial Hospital affiliated with the University of Texas, Southwestern Medical Center, Dallas, Texas 75390-9047, USA
| | | | | |
Collapse
|
24
|
Jedidi I, Couturier M, Thérond P, Gardès-Albert M, Legrand A, Barouki R, Bonnefont-Rousselot D, Aggerbeck M. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARalpha. Biochem Biophys Res Commun 2006; 351:733-8. [PMID: 17084382 DOI: 10.1016/j.bbrc.2006.10.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPARalpha or gamma. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPARalpha to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPARalpha.
Collapse
Affiliation(s)
- Iness Jedidi
- CNRS, UMR 8601, Laboratoire de Chimie-Physique, Paris F-75006, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lim HJ, Lee S, Lee KS, Park JH, Jang Y, Lee EJ, Park HY. PPARγ activation induces CD36 expression and stimulates foam cell like changes in rVSMCs. Prostaglandins Other Lipid Mediat 2006; 80:165-74. [PMID: 16939881 DOI: 10.1016/j.prostaglandins.2006.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 11/28/2022]
Abstract
The purpose of the present study was to determine the role of peroxisome proliferator-activated receptor gamma (PPARgamma) activation in smooth muscle cell (SMC) derived form cell formation. Wild and mutant type PPARgamma were delivered by adenovirus then activated with troglitazone. The result of Oil Red O staining and FACS analysis showed that PPARgamma activation induced lipid accumulation in rVSMCs. Furthermore, PPARgamma activation reduced SMC marker genes such as alpha-actin while induced adipocyte differentiation marker genes and lipid metabolism-related genes as evidenced by RT-PCR and fluorescent immunocytochemistry. All these data demonstrate that PPARgamma activation can drive foam cell like change in rVSMCs. Our results strongly suggest that PPARgamma expression induces CD36 expression and adipocyte differentiation gene activation in the process of atherosclerosis and might be one of the crucial events in SMC derived foam cell formation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- Actins/genetics
- Adiponectin/genetics
- Animals
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cells, Cultured
- Chromans/pharmacology
- Complement Factor D/genetics
- Fatty Acid-Binding Proteins/genetics
- Foam Cells/cytology
- Foam Cells/metabolism
- Gene Expression/drug effects
- Hypoglycemic Agents/pharmacology
- Lipid Metabolism/drug effects
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- PPAR alpha/genetics
- PPAR gamma/agonists
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Rats
- Rats, Sprague-Dawley
- Thiazolidinediones/pharmacology
- Transfection
- Troglitazone
- Tropomyosin/genetics
Collapse
Affiliation(s)
- Hyun-Joung Lim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, NIH, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Gorbenko O, Filonenko V, Gout I. Generation and characterization of monoclonal antibodies against FABP4. Hybridoma (Larchmt) 2006; 25:86-90. [PMID: 16704309 DOI: 10.1089/hyb.2006.25.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is a key mediator of intracellular transport and metabolism of fatty acids in adipose tissues. FABP4 binds fatty acids with high affinity and transports them to various compartments in the cell. When in complex with fatty acids, FABP4 interacts with and modulates the activity of two important regulators of metabolism: hormone-sensitive lipase and peroxisome proliferator-activated receptor gamma. Genetic studies in mice clearly indicated that deregulation of FABP4 function may lead to the development of severe diseases such as diabetes II type and atherosclerosis. In this study, we report the production and detailed characterization of monoclonal antibodies (MAbs) against FABP4. Recombinant glutathione S-transferase (GST)-FABP4 or His-FABP4 was expressed in bacteria, affinity purified, and used for immunization of mice, enzyme-linked immunosorbent assay (ELISA) screening, and characterization of selected clones. We have isolated two hybridoma clones that produced antibodies specific for recombinant and native FABP4, as shown by Western blotting and immunoprecipitation. The specificity of generated antibodies was further tested in a cell-based model of adipogenesis. In this analysis, the accumulation of FABP4 during NIH 3T3-L1 differentiation into adipocytes was detected by generated antibodies, which correlates well with previously published data. Taken together, we produced MAbs that will be useful for the scientific community working on fatty acid-binding proteins and lipid metabolism.
Collapse
Affiliation(s)
- Olena Gorbenko
- Department of Structure and Function of Nucleic Acids, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine.
| | | | | |
Collapse
|
27
|
Simon DM, Arikan MC, Srisuma S, Bhattacharya S, Tsai LW, Ingenito EP, Gonzalez F, Shapiro SD, Mariani TJ. Epithelial cell PPAR[gamma] contributes to normal lung maturation. FASEB J 2006; 20:1507-9. [PMID: 16720732 DOI: 10.1096/fj.05-5410fje] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma is a member of the nuclear hormone receptor superfamily that can promote cellular differentiation and organ development. PPARgamma expression has been reported in a number of pulmonary cell types, including inflammatory, mesenchymal, and epithelial cells. We find that PPARgamma is prominently expressed in the airway epithelium in the mouse lung. In an effort to define the physiological role of PPARgamma within the lung, we have ablated PPARgamma using a novel line of mice capable of specifically targeting the airway epithelium. Airway epithelial cell PPARgamma-targeted mice display enlarged airspaces resulting from insufficient postnatal lung maturation. The increase in airspace size is accompanied by alterations in lung physiology, including increased lung volumes and decreased tissue resistance. Genome-wide expression profiling reveals a reduction in structural extracellular matrix (ECM) gene expression in conditionally targeted mice, suggesting a disruption in epithelial-mesenchymal interactions necessary for the establishment of normal lung structure. Expression profiling of airway epithelial cells isolated from conditionally targeted mice indicates PPARgamma regulates genes encoding known PPARgamma targets, additional lipid metabolism enzymes, and markers of cellular differentiation. These data reveal airway epithelial cell PPARgamma is necessary for normal lung structure and function.
Collapse
Affiliation(s)
- Dawn M Simon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Thorn 908, 75 Francis St., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Szapary PO, Bloedon LT, Samaha FF, Duffy D, Wolfe ML, Soffer D, Reilly MP, Chittams J, Rader DJ. Effects of pioglitazone on lipoproteins, inflammatory markers, and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler Thromb Vasc Biol 2005; 26:182-8. [PMID: 16284192 DOI: 10.1161/01.atv.0000195790.24531.4f] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this research was to evaluate the short-term effects of pioglitazone (PIO) on high-density lipoprotein cholesterol (HDL-C) and other metabolic parameters in nondiabetic patients with metabolic syndrome (MetSyn). METHODS AND RESULTS Sixty nondiabetic adults with low HDL-C and MetSyn were randomized to PIO or matching placebo for 12 weeks. PIO increased HDL-C by 15% and 14% at 6 and 12 weeks, respectively, compared with placebo (P<0.001). Changes in HDL-C were correlated to changes in adiponectin (r=0.34; P=0.01) but not to changes in insulin resistance. PIO did not affect serum triglycerides or low-density lipoprotein (LDL) cholesterol concentrations but reduced the number of small LDL particles by 18% (P<0.001). PIO reduced median C-reactive protein levels by 31% (P<0.001) and mean resistin levels by 10% (P=0.02) while increasing mean serum levels of adiponectin by 111% (P<0.001) compared with placebo. PIO did not affect weight and modestly decreased insulin resistance. CONCLUSIONS In nondiabetic patients with low HDL-C and MetSyn, PIO significantly raised HDL-C and favorably affected lipoprotein particle size, markers of inflammation, and adipokines without changes in triglycerides, LDL-C, or weight. These results suggest that PIO has direct effects on HDL, which may contribute to its antiatherogenic effects.
Collapse
Affiliation(s)
- Philippe O Szapary
- Division of General Internal Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
ATP binding cassette transporter A1 (ABCA1) mediates the cellular efflux of phospholipids and cholesterol to lipid-poor apolipoprotein A1 (apoA1) and plays a significant role in high density lipoprotein (HDL) metabolism. ABCA1's role in the causation of Tangier disease, characterized by absent HDL and premature atherosclerosis, has implicated this transporter and its regulators liver-X-receptoralpha (LXRalpha) and peroxisome proliferator activated receptorgamma (PPARgamma) as new candidates potentially influencing the progression of atherosclerosis. In addition to lipid regulation, these genes are involved in apoptosis and inflammation, processes thought to be central to atherosclerotic plaque progression. A Medline-based review of the literature was carried out. Tangier disease and human heterozygotes with ABCA1 mutations provide good evidence that ABCA1 is a major candidate influencing atherosclerosis. Animal and in vitro experiments suggest that ABCA1 not only mediates cholesterol and phospholipid efflux, but is also involved in the regulation of apoptosis and inflammation. The complex and beneficial interactions between apoA1 and ABCA1 seem to be pivotal for cholesterol efflux. The expression of the ABCA1 is tightly regulated. Furthermore the plaque microenvironment could potentially promote ABCA1 protein degradation thus compromising cholesterol efflux. PPAR-LXR-ABCA1 interactions are integral to cholesterol homeostasis and these nuclear receptors have proven anti-inflammatory and anti-matrix metalloproteinase activity. Therapeutic manipulation of the ABCA1 transporter is feasible using PPAR and LXR agonists. PPAR agonists like glitazones and ABCA1 protein stabilization could potentially modify the clinical progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- S Soumian
- Department of Vascular Surgery, Faculty of Medicine, Imperial College, Charing Cross Hospital, London, UK.
| | | | | | | |
Collapse
|
30
|
Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR. Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler Thromb Vasc Biol 2005; 25:1220-4. [PMID: 15705927 DOI: 10.1161/01.atv.0000159163.52632.1b] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Toll-like receptors (TLRs) recognize pathogens and mediate signaling pathways important for host defense. Recent studies implicate TLR polymorphisms in atherosclerosis risk in humans. Adipocyte fatty acid-binding protein (aP2) is present in macrophages and has an important role in atherosclerotic plaque development. We investigated aP2 expression in RAW 264.7 cells treated with lipopolysaccharide (LPS) and other TLR agonists and assessed lipid accumulation in these activated murine macrophages. METHODS AND RESULTS Stimulation with LPS, a TLR4 ligand, resulted in a 56-fold increase in aP2 mRNA expression, and zymosan, a TLR2 ligand, induced an approximately 1500-fold increase. Polyinosine: polycytidylic acid (poly I:C), a TLR3 ligand, led to a 9-fold increase. Levels of aP2 protein were significantly increased in LPS or zymosan-treated macrophages compared with control or poly I:C-treated cells. In addition, the cholesteryl ester content of LPS or zymosan-treated macrophages was approximately 5-fold greater in the presence of low-density lipoprotein, and triglyceride content was approximately 2-fold greater in the absence of exogenous lipid than control or poly I:C-treated cells. CONCLUSIONS Expression of macrophage aP2 is induced on TLR activation and parallels increases in cholesteryl ester and triglyceride levels. These results provide a molecular link between the known roles of TLR and aP2 in foam cell formation.
Collapse
Affiliation(s)
- Mahmood R Kazemi
- Metabolism Section, Department of Veterans Affairs Medical Center, San Francisco, Calif, CA 94121, USA.
| | | | | | | | | |
Collapse
|
31
|
Tchoukalova YD, Sarr MG, Jensen MD. Measuring committed preadipocytes in human adipose tissue from severely obese patients by using adipocyte fatty acid binding protein. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1132-40. [PMID: 15284082 DOI: 10.1152/ajpregu.00337.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To understand the significance of the reported depot differences in preadipocyte dynamics, we developed a procedure to identify committed preadipocytes in the stromovascular fraction of fresh human adipose tissue. We documented that adipocyte fatty acid binding protein (aP2) is expressed in human preadipocyte clones capable of replication, indicating that can be used as a marker of committed preadipocytes. Because aP2 expression can be induced in macrophages, stromovascular cells were also stained for the macrophage marker CD68. We found aP2+CD68- cells (designated as committed preadipocytes) that did not have lipid droplets (true preadipocytes) and that did have lipid droplets < 6.5 microm in diameter (very immature adipocytes). Adipose tissue from subcutaneous, omental, and mesenteric depots was obtained from nine patients undergoing bariatric surgery for measurement of stromovascular cell number, the number of committed preadipocytes (aP2+CD68-), aP2+ macrophages (aP2+CD68+), and aP2- macrophages (aP2-CD68+). The number of committed preadipocytes did not differ significantly between depots but varied >20-fold among individuals. Total cell number, stromovascular cell number, and the number of aP2- macrophages was less (P < 0.05) in subcutaneous than in omental fat (means +/- SE, in millions: subcutaneous, 2.3 +/- 0.3, 1.4 +/- 0.3, and 0.17 +/- 0.08; and omental, 4.8 +/- 0.7, 3.8 +/- 0.5, and 0.34 +/- 0.06); mesenteric depot was intermediate. These data indicate that the cellular composition of adipose tissue varies between depots and between individuals. The ability to quantify committed preadipocytes in fresh adipose tissue should facilitate study of adipose tissue biology.
Collapse
|
32
|
Llaverias G, Lacasa D, Viñals M, Vázquez-Carrera M, Sánchez RM, Laguna JC, Alegret M. Reduction of intracellular cholesterol accumulation in THP-1 macrophages by a combination of rosiglitazone and atorvastatin. Biochem Pharmacol 2004; 68:155-63. [PMID: 15183127 DOI: 10.1016/j.bcp.2004.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 03/19/2004] [Indexed: 11/21/2022]
Abstract
Rosiglitazone and atorvastatin combination therapy has beneficial effects on both glycemic control and plasma lipid levels in type 2 diabetic patients. In the present study, we sought to determine whether this combination can also exert direct antiatherosclerotic effects in macrophages. Our results show that 2 microM rosiglitazone, alone or combined with 5 microM atorvastatin, significantly upregulated the expression of the ATP-binding cassette transporter ABCA1 and of the class B scavenger receptor CLA-1 (CD36 and LIMPII analog), both involved in cholesterol efflux from macrophages. On the other hand, the combination with atorvastatin attenuated the inductive response elicited by rosiglitazone alone on CD36 mRNA (34%, P < 0.05) and protein (16%, P < 0.05), while the uptake of oxidized low density lipoprotein (LDL) remained unaffected. When we examined the effects of the drugs on acetyl-LDL-induced cholesterol accumulation, we found that only the combination of atorvastatin with rosiglitazone caused a net depletion in the cholesteryl ester content of macrophages (35%, P < 0.05). Our data suggest that this reduction was not mediated by effects on proteins that regulate cholesterol flux, but it may be related to the inhibition of cholesteryl ester formation elicited by the statin.
Collapse
Affiliation(s)
- Gemma Llaverias
- Unitat de Farmacologia, Departament de Farmacologia i Química Terapèutica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Llaverias G, Noé V, Peñuelas S, Vázquez-Carrera M, Sánchez RM, Laguna JC, Ciudad CJ, Alegret M. Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages. Biochem Biophys Res Commun 2004; 318:265-74. [PMID: 15110783 DOI: 10.1016/j.bbrc.2004.04.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Indexed: 01/31/2023]
Abstract
With the aim of identifying new target genes that could contribute to limit foam cell formation, we analyzed changes in the pattern of gene expression in human THP-1 macrophages treated with atorvastatin and oxidized-LDL (oxLDL). To this end, we used a human cDNA array containing 588 cardiovascular-related cDNAs. Exposure to oxLDL resulted in differential expression of 26 genes, while coincubation with atorvastatin modified the expression of 29 genes, compared to treatment with oxLDL alone. Changes in the expression of candidate genes, potentially connected to the atherosclerotic process, were confirmed by quantitative RT-PCR and Western blot. We show that atorvastatin prevents the increase in the expression of scavenger receptor CD68 and that of fatty acid binding protein 4 caused by oxLDL. In addition, atorvastatin reduces the expression of HDL-binding protein, apolipoprotein E, and matrix metalloproteinase 9. These findings are relevant to understand the direct antiatherogenic effects of statins on macrophages.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Apolipoproteins E/biosynthesis
- Atorvastatin
- Autoradiography
- Blotting, Western
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cell Line
- Databases, Protein
- Fatty Acid-Binding Protein 7
- Fatty Acid-Binding Proteins
- Gene Expression/drug effects
- Gene Expression Profiling
- Heptanoic Acids/pharmacology
- Humans
- LDL-Receptor Related Protein-Associated Protein/biosynthesis
- LDL-Receptor Related Protein-Associated Protein/genetics
- Lipoproteins, LDL/antagonists & inhibitors
- Lipoproteins, LDL/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Metalloendopeptidases/biosynthesis
- Pyrroles/pharmacology
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Gemma Llaverias
- Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jin S, Mathis AS, Gioia K, Minko T, Friedman GS, Rosenblatt J, Peng F, Serur DS, Knipp GT. EFFECT OF TACROLIMUS ON THE EXPRESSION OF MACROPHAGE SCAVENGER AND NUCLEAR HORMONE RECEPTORS IN THP-1–DERIVED HUMAN MACROPHAGES. Transplantation 2004; 77:1281-7. [PMID: 15114099 DOI: 10.1097/01.tp.0000120950.16995.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Data indicate that tacrolimus and cyclosporine A (CsA) differentially affect the risk of atherosclerosis. The results of our recent in vitro studies of clinically relevant CsA concentrations demonstrated the modulation of macrophage scavenger receptors (MSRs) involved in atherogenesis. This work evaluated the effects of clinically relevant tacrolimus concentrations on the expression of the MSR genes CD36 and CD68, SR-A and SR-BII, lectin-like oxidized low-density lipoprotein receptor-1, the nuclear hormone receptors peroxisome proliferator-activated receptor (PPAR)gamma and liver-X-receptor-alpha, and the cholesterol efflux pump ABCA1 in the in vitro human THP-1 macrophage model. METHODS The cells were cultured and differentiated into macrophages. Macrophages were treated with the tacrolimus to assess gene expression in a time-dependent (1, 2, 4, 8, and 24 hr) and dose-dependent (concentrations [micrograms/liter] corresponding to the trough [15], peak [30], and 4 x peak [120]) manner using reverse-transcriptase polymerase chain reactions. The gene expression levels of interest were normalized to GAPDH expression in each sample to provide semiquantitative reverse-transcriptase polymerase chain reaction results. Additional immunoblotting studies demonstrated protein expression of CD36, PPARgamma, and ABCA1. RESULTS.: The gene expression of CD36, SR-BII, and lectin-like oxidized low-density lipoprotein receptor-1 were down-regulated, and ABCA1 was up-regulated. CD68, SR-AI, liver-X-receptor-alpha, and PPARgamma were regulated in a dose-dependent manner. Protein expression of CD36 was down-regulated, and PPARgamma and ABCA1 were relatively unchanged. CONCLUSIONS Tacrolimus seems to regulate MSRs, nuclear hormone receptors, and ABCA1 in THP-1 macrophages. These results differ from previous findings with CsA and may provide insight into the mechanisms of posttransplant atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/genetics
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- CD36 Antigens/genetics
- Cell Line
- Cyclosporine/adverse effects
- Cyclosporine/pharmacology
- Gene Expression/drug effects
- Humans
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Immunologic/genetics
- Receptors, LDL/genetics
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Tacrolimus/adverse effects
- Tacrolimus/pharmacology
Collapse
Affiliation(s)
- Song Jin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Smirnova IV, Kajstura M, Sawamura T, Goligorsky MS. Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: role in foam cell formation. Am J Physiol Heart Circ Physiol 2004; 287:H782-90. [PMID: 15016631 DOI: 10.1152/ajpheart.00822.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intimal infiltration by monocytes and accumulation of lipids represent a critical step in the formation of fatty streaks during atherogenesis. Because elevated plasma levels of asymmetric dimethylarginine (ADMA), a potent nitric oxide (NO) synthase (NOS) inhibitor, are prevalent in diverse cardiovascular diseases, the goal of this study was to examine the contribution of NO deficiency to macrophage lipid accumulation. Inhibition of NO synthesis in PMA-primed human monocytic leukemia HL-60 cells resulted in a twofold increase in expression of the receptor for oxidized LDL (OxLDL), termed the lectin-like OxLDL receptor (LOX-1). Blockade of inducible NOS in activated macrophages resulted in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-OxLDL accumulation and imparted macrophages with a foamy appearance as detected with oil-red O lipid staining. ADMA (15 microM) or N(G)-nitro-l-arginine methyl ester (l-NAME, 300 microM), both of which suppress inducible NOS activity, increased oil-red staining 1.9- and 2.8-fold, respectively. Macrophages treated with ADMA or l-NAME showed a 2.4-fold increase in accumulation of DiI-OxLDL. To examine the role of LOX-1 in this process, we used small interfering RNA (siRNA) duplex-mediated LOX-1 gene silencing. LOX-1 expression was suppressed twofold by siRNA as shown by Western blot analysis. This suppression was associated with a two- to fourfold decrease in DiI-OxLDL uptake as identified by fluorescence microscopy and decreased oil-red O staining by activated macrophages. In conclusion, accumulation of ADMA (a competitive inhibitor of NOS) in patients with chronic renal failure may be responsible for upregulation of LOX-1 receptor and increased OxLDL uptake, thus contributing to lipidosis and foam cell formation. The data illustrate an additional nonendothelial mode of antiatherogenic action of NO: prevention of LOX-1 induction and lipid accumulation by macrophages.
Collapse
Affiliation(s)
- I V Smirnova
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|