1
|
Jiao W, Gong X, Sun Y, Sang L, Ding X, Yu M. Ultrasound contrast agent assisted ultrasonography guidance percutaneous nephrostomy for non-hydronephrotic kidney. Ultrasound J 2024; 16:14. [PMID: 38386209 PMCID: PMC10884382 DOI: 10.1186/s13089-024-00362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Given the limited success rate and considerable challenges associated with conventional ultrasonography (US) guidance for percutaneous nephrostomy (PCN) in non-hydronephrotic kidneys, this study proposed a solution with ultrasound contrast agent to enhance the success rate and mitigate the difficulties. MATERIALS AND METHODS From January 2017 to August 2023, a total of thirteen patients diagnosed with non-hydronephrotic kidney were included in the study. Following routine ultrasonography examination, no significant dilatation of the renal collecting system was observed. US-guided percutaneous nephrostomy PCN was performed with the assistance of ultrasound contrast agent (UCA). The patients were subsequently monitored to assess the improvement of symptoms and postoperative recovery. RESULTS The success rate was found to be 100% for all patients (13/13) and kidneys (20/20). The average volume of UCA solution used was 19 ± 6.7 mL (range, 11-35 mL), while the mean duration of the operation was 18.92 ± 8.96 min (range, 7-36 min). A majority of the patients (12/13) underwent a single puncture procedure. Throughout the follow-up period, no serious complications were observed, and surgery resulted in significant alleviation of symptoms in all patients. CONCLUSION The use of UCA-assisted US guidance PCN has been shown to be effective in achieving urinary diversion and alleviating associated clinical symptoms in non-hydronephrotic kidneys. In comparison to traditional methods, this approach demonstrates a high success rate and safety profile, while also offering a simplified operative procedure. Consequently, it presents a novel method and concept for managing non-hydronephrotic kidneys afflicted by urine leakage.
Collapse
Affiliation(s)
- Weijie Jiao
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Xue Gong
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Yuanyuan Sun
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Lin Sang
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Xiaoying Ding
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China
| | - Ming Yu
- The Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, No.127 Changle West Rd, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Zhang T, Li CH, Li W, Wang Z, Gu Z, Li J, Yuan J, Ou-Yang J, Yang X, Zhu B. A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications. NANO-MICRO LETTERS 2024; 16:122. [PMID: 38372850 PMCID: PMC10876513 DOI: 10.1007/s40820-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Compared with traditional piezoelectric ultrasonic devices, optoacoustic devices have unique advantages such as a simple preparation process, anti-electromagnetic interference, and wireless long-distance power supply. However, current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency, which seriously hinder their widespread applications. In this study, using a self-healing polydimethylsiloxane (PDMS, Fe-Hpdca-PDMS) and carbon nanotube composite, a flexible optoacoustic patch is developed, which possesses the self-healing capability at room temperature, and can even recover from damage induced by cutting or laser irradiation. Moreover, this patch can generate high-intensity ultrasound (> 25 MPa) without the focusing structure. The laser damage threshold is greater than 183.44 mJ cm-2, and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66 × 10-3, compared with other carbon-based nanomaterials and PDMS composites. This patch is also been successfully examined in the application of acoustic flow, thrombolysis, and wireless energy harvesting. All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.
Collapse
Affiliation(s)
- Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Zhen Wang
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), 35A Convent Drive, Bethesda, MD, 20892, USA
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Bautista KJB, Kim J, Xu Z, Jiang X, Dayton PA. Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1049-1057. [PMID: 36868959 DOI: 10.1016/j.ultrasmedbio.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 05/11/2023]
Abstract
Thrombosis in cardiovascular disease is an urgent global issue, but treatment progress is limited by the risks of current antithrombotic approaches. The cavitation effect in ultrasound-mediated thrombolysis offers a promising mechanical alternative for clot lysis. Further addition of microbubble contrast agents introduces artificial cavitation nuclei that can enhance the mechanical disruption induced by ultrasound. Recent studies have proposed sub-micron particles as novel sonothrombolysis agents with increased spatial specificity, safety and stability for thrombus disruption. In this article, the applications of different sub-micron particles for sonothrombolysis are discussed. Also reviewed are in vitro and in vivo studies that apply these particles as cavitation agents and as adjuvants to thrombolytic drugs. Finally, perspectives on future developments in sub-micron agents for cavitation-enhanced sonothrombolysis are shared.
Collapse
Affiliation(s)
- Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
He T, Jokerst JV. Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci 2020; 8:5555-5573. [PMID: 32985632 DOI: 10.1039/d0bm01313g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a "platform" approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures (e.g. simple, porous, Janus, and core-shell particles), non-spherical structures (e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions (e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment (e.g. temperature and humidity), and types of collection media are highlighted.
Collapse
Affiliation(s)
- Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
7
|
Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6792465. [PMID: 31662987 PMCID: PMC6791276 DOI: 10.1155/2019/6792465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022]
Abstract
Cardiac-cerebral thrombosis and malignant tumor endanger the safety of human life seriously. Traditional chemotherapy drugs have side effects which restrict their applications. Drug-loaded microbubbles can be destroyed by ultrasound irradiation at the focus position and be used for thrombolysis and tumor therapy. Compared with traditional drug treatment, the drug-loaded microbubbles can be excited by ultrasound and release drugs to lesion sites, increasing the local drug concentration and the exposure dose to nonfocal regions, thus reducing the cytotoxicity and side effects of drugs. This article reviews the applications of drug-loaded microbubbles combined with ultrasound for thrombolysis and tumor therapy. We focus on highlighting the advantages of using this new technique for disease treatment and concluding with recommendations for future efforts on the applications of this technology.
Collapse
|
8
|
Brüßler J, Strehlow B, Becker A, Schubert R, Schümmelfeder J, Nimsky C, Bakowsky U. Nanoscaled ultrasound contrast agents for enhanced sonothrombolysis. Colloids Surf B Biointerfaces 2018; 172:728-733. [DOI: 10.1016/j.colsurfb.2018.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/27/2022]
|
9
|
Shi A, Lundt J, Deng Z, Macoskey J, Gurm H, Owens G, Zhang X, Hall TL, Xu Z. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2697-2709. [PMID: 30279032 PMCID: PMC6215517 DOI: 10.1016/j.ultrasmedbio.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/04/2023]
Abstract
After the collapse of a cavitation bubble cloud, residual microbubbles can persist for up to seconds and function as weak cavitation nuclei for subsequent pulses in a phenomenon known as cavitation memory effect. In histotripsy, the cavitation memory effect can cause bubble clouds to repeatedly form at the same discrete set of sites. This effect limits the efficacy of histotripsy-based tissue fractionation. Our previous studies have indicated that low-amplitude bubble-coalescing (BC) ultrasound sequences interleaved with high-amplitude histotripsy pulses can coalesce the residual bubbles into one large bubble quickly. This reduces the cavitation memory effect and may increase treatment efficacy. Histotripsy has been investigated for thrombolysis by breaking up clots into debris smaller than red blood cells. However, this treatment has low efficacy for aged or retracted clots. In this study, we investigate the use of histotripsy with BC to improve the efficacy of treatment of retracted clots. An integrated histotripsy and bubble-coalescing (HBC) transducer system with specialized electronic driving system was built in-house. One high-amplitude (32 MPa), one-cycle histotripsy pulse followed by 36 low-amplitude (2.4 MPa), one-cycle BC pulses formed one HBC sequence. Results indicate that HBC sequences successfully generated a flow channel through the retracted clots at scan speeds of 0.2-0.5 mm/s. The channel size created using the HBC sequence was 128% to 480% larger than that created using histotripsy alone. The clot debris particles generated during HBC treatments were within the tolerable range. These results illustrate the concept that BC improves the treatment efficacy of histotripsy thrombolysis for retracted clots.
Collapse
Affiliation(s)
- Aiwei Shi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zilin Deng
- Department of Biomedical Engineering, Beihang University, Beijing, China
| | - Jonathan Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hitinder Gurm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabe Owens
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Xi Zhang
- Fitbit Corporation, San Francisco, California, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Izadifar Z, Babyn P, Chapman D. Ultrasound Cavitation/Microbubble Detection and Medical Applications. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0391-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Kim J, Lindsey BD, Chang WY, Dai X, Stavas JM, Dayton PA, Jiang X. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci Rep 2017; 7:3454. [PMID: 28615645 PMCID: PMC5471247 DOI: 10.1038/s41598-017-03492-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.
Collapse
Affiliation(s)
- Jinwook Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Wei-Yi Chang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuming Dai
- Division of Cardiology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Joseph M Stavas
- Division of Vascular and Interventional Radiology, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Yan WC, Chua QW, Ong XJ, Sharma VK, Tong YW, Wang CH. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J Colloid Interface Sci 2017; 501:282-293. [PMID: 28460221 DOI: 10.1016/j.jcis.2017.04.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
A single-step fabrication method, coaxial electrohydrodynamic atomization (CEHDA), was developed to synthesize drug-loaded microbubbles (MBs) for combination treatment of ischemic stroke. The bioactivity of therapeutic agent (tPA, tissue plasminogen activator) after preparation was evaluated, showing that CEHDA could be very promising method for producing MBs with therapeutic functions. The bubble performance and tPA release profiles were also examined by exposing the bubbles to 2MHz ultrasound of various intensities. The results showed that the mean diameter of tPA-loaded MBs was found to fluctuate about its original diameter when exposed to ultrasound and higher intensity ultrasound was more effective in triggering the burst of CEHDA MBs. High ultrasound-triggered bubble disintegration effectiveness in a short period (first 5min) fits well with the requirement of short ultrasound exposure time for human brain. Moreover, a numerical model was also applied to investigate the stability of the fabricated MBs in the bloodstream. It was found that MB dissolution time increased with initial radius, decreased with initial surface tension and increased with initial shell resistance but it was barely affected by the average excessive bloodstream pressure.
Collapse
Affiliation(s)
- Wei-Cheng Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qing Wei Chua
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiu Jing Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Vijay Kumar Sharma
- Division of Neurology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
13
|
Khokhlova TD, Monsky WL, Haider YA, Maxwell AD, Wang YN, Matula TJ. Histotripsy Liquefaction of Large Hematomas. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1491-8. [PMID: 27126244 PMCID: PMC4899253 DOI: 10.1016/j.ultrasmedbio.2016.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 05/04/2023]
Abstract
Intra- and extra-muscular hematomas result from repetitive injury as well as sharp and blunt limb trauma. The clinical consequences can be serious, including debilitating pain and functional deficit. There are currently no short-term treatment options for large hematomas, only lengthy conservative treatment. The goal of this work was to evaluate the feasibility of a high intensity focused ultrasound (HIFU)-based technique, termed histotripsy, for rapid (within a clinically relevant timeframe of 15-20 min) liquefaction of large volume (up to 20 mL) extra-vascular hematomas for subsequent fine-needle aspiration. Experiments were performed using in vitro extravascular hematoma phantoms-fresh bovine blood poured into 50 mL molds and allowed to clot. The resulting phantoms were treated by boiling histotripsy (BH), cavitation histotripsy (CH) or a combination in a degassed water tank under ultrasound guidance. Two different transducers operating at 1 MHz and 1.5 MHz with f-number = 1 were used. The liquefied lysate was aspirated and analyzed by histology and sized in a Coulter Counter. The peak instantaneous power to achieve BH was lower than (at 1.5 MHz) or equal to (at 1 MHz) that which was required to initiate CH. Under the same exposure duration, BH-induced cavities were one and a half to two times larger than the CH-induced cavities, but the CH-induced cavities were more regularly shaped, facilitating easier aspiration. The lysates contained a small amount of debris larger than 70 μm, and 99% of particulates were smaller than 10 μm. A combination treatment of BH (for initial debulking) and CH (for liquefaction of small residual fragments) yielded 20 mL of lysate within 17.5 minutes of treatment and was found to be most optimal for liquefaction of large extravascular hematomas.
Collapse
Affiliation(s)
- Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Wayne L Monsky
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Yasser A Haider
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Thomas J Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Schleicher N, Tomkins AJ, Kampschulte M, Hyvelin JM, Botteron C, Juenemann M, Yeniguen M, Krombach GA, Kaps M, Spratt NJ, Gerriets T, Nedelmann M. Sonothrombolysis with BR38 Microbubbles Improves Microvascular Patency in a Rat Model of Stroke. PLoS One 2016; 11:e0152898. [PMID: 27077372 PMCID: PMC4831751 DOI: 10.1371/journal.pone.0152898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background Early recanalization of large cerebral vessels in ischemic stroke is associated with improved clinical outcome, however persisting hypoperfusion leads to poor clinical recovery despite large vessel recanalization. Limited experimental sonothrombolysis studies have shown that addition of microbubbles during treatment can improve microvascular patency. We aimed to determine the effect of two different microbubble formulations on microvascular patency in a rat stroke model. Methods We tested BR38 and SonoVue® microbubble-enhanced sonothrombolysis in Wistar rats submitted to 90-minute filament occlusion of the middle cerebral artery. Rats were randomized to treatment (n = 6/group): control, rt-PA, or rt-PA+3-MHz ultrasound insonation with BR38 or SonoVue® at full or 1/3 dose. Treatment duration was 60 minutes, beginning after withdrawal of the filament, and sacrifice was immediately after treatment. Vascular volumes were evaluated with microcomputed tomography. Results Total vascular volume of the ipsilateral hemisphere was reduced in control and rt-PA groups (p<0.05), but was not significantly different from the contralateral hemisphere in all microbubble-treated groups (p>0.1). Conclusions Microbubble-enhanced sonothrombolysis improves microvascular patency. This effect is not dose- or microbubble formulation-dependent suggesting a class effect of microbubbles promoting microvascular reopening. This study demonstrates that microbubble-enhanced sonothrombolysis may be a therapeutic strategy for patients with persistent hypoperfusion of the ischemic territory.
Collapse
Affiliation(s)
- Nadine Schleicher
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Cardiac Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Amelia J. Tomkins
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | | | | | - Martin Juenemann
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Mesut Yeniguen
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Gabriele A. Krombach
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Neil J. Spratt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Hunter New England Local Health District, New Lambton, NSW, Australia
| | - Tibo Gerriets
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Buergerhospital Friedberg, Friedberg, Germany
| | - Max Nedelmann
- Sana Regio Klinkum, Pinneberg, Germany
- Department of Neurology, University Hospital Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Petit B, Yan F, Bussat P, Bohren Y, Gaud E, Fontana P, Tranquart F, Allémann E. Fibrin degradation during sonothrombolysis – Effect of ultrasound, microbubbles and tissue plasminogen activator. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014; 3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- School of Medicine; University of Leeds; Leeds LS2 9JT UK
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research; Leeds Institute of Genetics; Health and Therapeutics; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
17
|
Guo C, Jin Y, Dai Z. Multifunctional Ultrasound Contrast Agents for Imaging Guided Photothermal Therapy. Bioconjug Chem 2014; 25:840-54. [DOI: 10.1021/bc500092h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Caixin Guo
- School
of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yushen Jin
- School
of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department
of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Yitao H, Kefu M, Bingshan T, Xuejun F, Ying Z, Zhili C, Xin J, Guo Y. Effects of Batroxobin with Continuous Transcranial Doppler Monitoring in Patients with Acute Cerebral Stroke: A Randomized Controlled Trial. Echocardiography 2014; 31:1283-92. [PMID: 24684297 DOI: 10.1111/echo.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- He Yitao
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Ma Kefu
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Tang Bingshan
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Fu Xuejun
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Zhan Ying
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Cai Zhili
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| | - Jiang Xin
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- Department of Cardiology; Shenzhen people's Hospital; Shenzhen China
| | - Yi Guo
- Department of Neurology; Shenzhen people's Hospital; Shenzhen China
- 2nd Clinical Medical College of Jinan University; Shenzhen China
| |
Collapse
|
19
|
Dervishi E, Aubry JF, Delattre JY, Boch AL. [Focused ultrasound therapy: current status and potential applications in neurosurgery]. Neurochirurgie 2013; 59:201-9. [PMID: 24210288 DOI: 10.1016/j.neuchi.2013.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/19/2013] [Accepted: 06/09/2013] [Indexed: 01/26/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.
Collapse
Affiliation(s)
- E Dervishi
- Équipe de neuro-oncologie expérimentale, Inserm, UMRS 975, CNRS 7225, institut du cerveau et de la moelle épinière, groupe hospitalier La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | |
Collapse
|
20
|
Cui H, Yang X. Laser enhanced high-intensity focused ultrasound thrombolysis: an in vitro study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:EL123-8. [PMID: 23363192 PMCID: PMC3562328 DOI: 10.1121/1.4778375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laser-enhanced thrombolysis by high intensity focused ultrasound (HIFU) treatment was studied in vitro with bovine blood clots. To achieve laser-enhanced thrombolysis, laser light was employed to illuminate the sample concurrently with HIFU radiation, and ultrasound and laser parameters were optimized to achieve better thrombolysis efficiency. The results indicated that the thrombolysis efficiency increased when pulse length of HIFU wave, HIFU pressure, or laser fluence increases. Also, with the presence of laser, an enhanced effect of thrombolysis was observed.
Collapse
Affiliation(s)
- Huizhong Cui
- KU Bioengineering Research Center, Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
21
|
Amaral-Silva A, Piñeiro S, Molina CA. Sonothrombolysis for the treatment of acute stroke: current concepts and future directions. Expert Rev Neurother 2011; 11:265-73. [PMID: 21306213 DOI: 10.1586/ern.11.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Achieving rapid reperfusion transcranial color-coded duplex is the critical issue in acute stroke treatment. Ultrasound (US) generates negative pressure waves that are associated with an increase in either intrinsic or intravenous tissue plasminogen activator (tPA)-induced fibrinolytic activity. Higher rates of tPA-induced arterial recanalization, associated with a trend towards better functional outcome, have been safely achieved by using high-frequency US. By contrast, the use of low-frequency US and transcranial color-coded duplex has been linked to significant hemorrhagic complications. US-accelerated thrombolysis has been safely enhanced by lowering the amount of energy needed for acoustic cavitation with the administration of microbubbles. Other applications of US are being studied, including its intra-arterial use. Operator-independent devices, which will spread the use of these US techniques further, are also being developed. This article reviews the present status of sonothrombolysis in acute stroke treatment, highlighting both experimental and clinical studies addressing this issue, and discusses its future regarding both efficacy and safety.
Collapse
Affiliation(s)
- Alexandre Amaral-Silva
- Cerebrovascular Unit, Hospital de São José, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | | | | |
Collapse
|
22
|
Mitri FG. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory. ULTRASONICS 2010; 50:387-396. [PMID: 19833370 DOI: 10.1016/j.ultras.2009.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/12/2009] [Accepted: 09/13/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. METHOD The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0<ka 3, which corresponds to a frequency bandwidth of 0-205 MHz that covers a wide range of applications for imaging with contrast agents. Particular attention is paid to the shell's material, the content of its interior hollow region and the fluid surrounding its exterior. The contrast agent shell is assumed to be immersed in an ideal compressible fluid so the viscous corrections are not considered. Analytical equations are derived and numerical calculations of the total and resonance form functions are performed with particular emphasis on the effect of varying the half-cone angle, the order of the helicoidal Bessel beam as well as the fluid that fills the interior hollow space. RESULTS AND CONCLUSION It is shown that shell wave resonance modes can be excited on an encapsulated micro-bubble. The forward and backscattering vanish for a helicoidal high-order Bessel beam. Additionally, the fluid filling the inner core affects the shell's response significantly. Moreover, there is no monopole contribution to the axial scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications.
Collapse
Affiliation(s)
- F G Mitri
- Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Ultrasound Research Laboratory, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Porter TR. The utilization of ultrasound and microbubbles for therapy in acute coronary syndromes. Cardiovasc Res 2009; 83:636-42. [PMID: 19541670 DOI: 10.1093/cvr/cvp206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrasound has become a useful high resolution imaging modality for examining the cardiac microcirculation. With the use of microbubbles as an ultrasound contrast agent, ultrasound can be utilized to image the microcirculation and detect capillary flow abnormalities in acute ischaemia. A wide range of ultrasound frequencies (including those used for diagnostic transthoracic imaging) have also been utilized therapeutically to augment the effectiveness of fibrinolytic therapy in ST-segment elevation myocardial infarction (STEMI). Ultrasound and microbubbles are now being explored as methods of improving both microcirculatory and epicardial flow in acute STEMI. This article will review the mechanisms by which ultrasound and microbubbles assist in thrombus detection and dissolution. In addition, the pre-clinical studies utilizing transthoracic ultrasound as a therapeutic entity in acute STEMI will be reviewed. Clinical studies, completed and ongoing, will also be presented.
Collapse
Affiliation(s)
- Thomas R Porter
- University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE 68198-2265, USA.
| |
Collapse
|
24
|
Abstract
Therapeutic applications of ultrasound predate its use in imaging. A range of biological effects can be induced by ultrasound, depending on the exposure levels used. At low levels, beneficial, reversible cellular effects may be produced, whereas at high intensities instantaneous cell death is sought. Therapy ultrasound can therefore be broadly divided into "low power" and "high power" applications. The "low power" group includes physiotherapy, fracture repair, sonophoresis, sonoporation and gene therapy, whereas the most common use of "high power" ultrasound in medicine is probably now high intensity focused ultrasound. Therapeutic effect through the intensity spectrum is obtained by both thermal and non-thermal interaction mechanisms. At low intensities, acoustic streaming is likely to be significant, but at higher levels, heating and acoustic cavitation will predominate. While useful therapeutic effects are now being demonstrated clinically, the mechanisms by which they occur are often not well understood.
Collapse
Affiliation(s)
- Gail ter Haar
- Joint Physics Department, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK.
| |
Collapse
|
25
|
Tsutsui JM, Xie F, Johanning J, Lof J, Cory B, He A, Thomas L, Matsunaga T, Unger E, Porter TR. Treatment of deeply located acute intravascular thrombi with therapeutic ultrasound guided by diagnostic ultrasound and intravenous microbubbles. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2006; 25:1161-8. [PMID: 16929017 DOI: 10.7863/jum.2006.25.9.1161] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE We sought to determine the added value of simultaneous imaging of intravenously infused microbubbles that are being used to dissolve an intravascular thrombus with therapeutic ultrasound (TUS). METHODS In a chronic canine arteriovenous graft occluded by a thrombus, TUS (1 MHz) was applied through a 6-cm-thick tissue-mimicking phantom (measured mean +/- SD peak negative pressure through the phantom, 958 +/- 104 kPa) during an intravenous infusion of either saline (n = 6 occlusions) or lipid-encapsulated microbubbles (ImaRx Therapeutics, Inc, Tucson, AZ). Therapeutic ultrasound was intermittently applied during the microbubble infusion either at set time intervals (n = 6 occlusions) or when simultaneous diagnostic ultrasound (DUS) indicated a sustained presence of microbubbles (n = 12 occlusions). Success was defined as return of rapid flow within the graft (grade 3 flow). RESULTS Diagnostic ultrasound showed microbubbles moving through small channels within the thrombus before angiographic evidence of flow in the graft. This guided the timing of TUS application better than using set time intervals. Angiographic clearance of the thrombus and restoration of grade 3 flow at 45 minutes of treatment were seen in 33% of deeply located thrombosed grafts treated with TUS at set time intervals and 92% of grafts treated with TUS guided by DUS (P < .001 compared with set time intervals). CONCLUSIONS The use of TUS with intravenous microbubbles has a high success rate in recanalizing deeply located thrombosed arteriovenous grafts when performed with DUS guidance.
Collapse
Affiliation(s)
- Jeane M Tsutsui
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, 981165 Nebraska Medical Center, Omaha, 68198-1165 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dourado PMM, Tsutsui JM, Santos JMT, Aiello VD, Mathias W, Ramires JAF, da Luz PL, Chagas ACP. Bioeffects of albumin-encapsulated microbubbles and real-time myocardial contrast echocardiography in an experimental canine model. Braz J Med Biol Res 2006; 39:825-832. [PMID: 16751990 DOI: 10.1590/s0100-879x2006000600017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myocardial contrast echocardiography has been used for assessing myocardial perfusion. Some concerns regarding its safety still remain, mainly regarding the induction of microvascular alterations. We sought to determine the bioeffects of microbubbles and real-time myocardial contrast echocardiography (RTMCE) in a closed-chest canine model. Eighteen mongrel dogs were randomly assigned to two groups. Nine were submitted to continuous intravenous infusion of perfluorocarbon-exposed sonicated dextrose albumin (PESDA) plus continuous imaging using power pulse inversion RTMCE for 180 min, associated with manually deflagrated high-mechanical index impulses. The control group consisted of 3 dogs submitted to continuous imaging using RTMCE without PESDA, 3 dogs received PESDA alone, and 3 dogs were sham-operated. Hemodynamics and cardiac rhythm were monitored continuously. Histological analysis was performed on cardiac and pulmonary tissues. No hemodynamic changes or cardiac arrhythmias were observed in any group. Normal left ventricular ejection fraction and myocardial perfusion were maintained throughout the protocol. Frequency of mild and focal microhemorrhage areas in myocardial and pulmonary tissue was similar in PESDA plus RTMCE and control groups. The percentages of positive microscopical fields in the myocardium were 0.4 and 0.7% (P = NS) in the PESDA plus RTMCE and control groups, respectively, and in the lungs they were 2.1 and 1.1%, respectively (P = NS). In this canine model, myocardial perfusion imaging obtained with PESDA and RTMCE was safe, with no alteration in cardiac rhythm or left ventricular function. Mild and focal myocardial and pulmonary microhemorrhages were observed in both groups, and may be attributed to surgical tissue manipulation.
Collapse
Affiliation(s)
- P M M Dourado
- Laboratório de Investigação em Isquemia Miocárdica, Unidade Clínica de Aterosclerose, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Topcuoglu MA, Saka E, Onal MZ. Hyperoxia potentiated sonothrombolysis as a method of acute ischemic stroke therapy. Med Hypotheses 2006; 66:59-65. [PMID: 16144745 DOI: 10.1016/j.mehy.2005.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/05/2005] [Indexed: 11/21/2022]
Abstract
The main goal in the treatment of acute ischemic stroke is prompt arterial recanalization. Thrombolysis with recombinant tissue plasminogen activator (rtPA) is efficient in humans, but shows significant problems including slow and incomplete recanalization and frequent bleeding complications. Limited therapeutic window (the first three hours after onset) is the major limitation resulting in reach too few patients. Therefore, adjunctive therapies extending the reperfusion time window, increasing efficacy and reducing side effects of rtPA are needed. Ultrasound augmentation of rtPA-mediated thrombolysis is suggested to overcome some of these problems, but low-frequency ultrasound (less than 1 MHz) is not safe and high frequency ultrasound (2 MHz) is not much effective. We suggest that normobaric hyperoxia (NBO) may increase the efficacy of ultrasound and rtPA combination in addition to its own efficacy in acute ischemic stroke. Briefly, NBO increases arterial partial oxygen pressure (pO(2)) significantly up to 6-fold. Increase of pO(2) results in an increase of dissolved oxygen in the blood according to Henry's law. Enhanced dissolved oxygen increases gas nuclei formation around and inside of the clot, and decreases the Blake threshold. Under ultrasound field, these small gas nuclei form nano bubbles which fuel inertial cavitation as substrates, and therefore increase the clot fragmentation and lysis. This hypothesis has not been tested so far. The combination of rtPA, therapeutic ultrasound and NBO may be more efficacious than rtPA alone or its combination with ultrasound as acute stroke treatment modality, because each has different and probably additive mechanism of action.
Collapse
Affiliation(s)
- Mehmet Akif Topcuoglu
- Akdeniz University, Faculty of Medicine, Department of Neurology and Neurosonology Laboratory, 07054 Antalya, Turkey.
| | | | | |
Collapse
|
28
|
Tsutsui JM, Elhendy A, Xie F, O'Leary EL, McGrain AC, Porter TR. Safety of dobutamine stress real-time myocardial contrast echocardiography. J Am Coll Cardiol 2005; 45:1235-42. [PMID: 15837255 DOI: 10.1016/j.jacc.2005.01.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/09/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine the safety of dobutamine stress myocardial perfusion imaging (MPI) obtained by real-time contrast echocardiography (RTCE) and intravenous ultrasound contrast in a large cohort of patients with suspected coronary artery disease (CAD). BACKGROUND Despite the increasing number of studies showing the potential clinical utility of myocardial contrast perfusion imaging with commercially available contrast agents, the safety of this technique in a clinical setting has not been demonstrated. METHODS Over a four-year period, 1,486 patients underwent dobutamine stress RTCE with low mechanical index pulse sequence schemes after intravenous injections of commercially available contrast agents (35% Definity, Bristol Myers Squibb Medical Imaging Inc., North Billerica, Massachusetts; 65% Optison, GE-Amersham, Princeton, New Jersey). The hemodynamic and adverse effects of RTCE were compared with 1,012 patients who underwent conventional dobutamine stress echocardiography (DSE) without contrast. The feasibility of image analysis was defined as the ability to analyze MPI in at least two of the three standard segments in each left ventricular wall. RESULTS No myocardial infarction or death occurred during dobutamine stress. There was no difference in the incidence of nonsustained ventricular tachycardia, sustained ventricular tachycardia, or supraventricular tachycardia during dobutamine infusion between RTCE and DSE. Myocardial perfusion imaging was considered feasible for analysis in 94% of the walls at baseline and 95% at peak stress. The anterior, lateral, and posterior walls were the most common regions in which MPI was not feasible. Myocardial perfusion imaging with RTCE had a higher accuracy for detecting patients with angiographically significant CAD than the analysis of wall motion (84% vs. 66%, respectively; p < 0.001). CONCLUSIONS Dobutamine stress RTCE appears to be a safe and feasible technique for evaluating patients with known or suspected CAD.
Collapse
Affiliation(s)
- Jeane M Tsutsui
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-1165, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abramowicz JS. Ultrasonographic contrast media: has the time come in obstetrics and gynecology? JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:517-531. [PMID: 15784770 DOI: 10.7863/jum.2005.24.4.517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
OBJECTIVE The aim of this work was to review the technical aspects and clinical applications of contrast media (microbubbles and nanomolecular agents) in obstetric and gynecologic ultrasonographic imaging. METHODS With the use of a computerized database (MEDLINE) and several Web-based search engines (Google Scholar and Copernic), relevant articles on ultrasonographic contrast media were reviewed. References cited in these articles and not obtained via the search engines were also reviewed. RESULTS Ultrasonographic contrast media constitute a new and expanding technology. They are frequently used, for example, in adult cardiology. Extensive research in laboratory setups, animals, and human subjects has shown their safety and huge potential as an adjunctive tool in clinical practice. They increase signals returning from insonated tissues and are particularly effective as intravascular agents, enhancing color and Doppler signals, for instance. Preliminary results in tumor imaging are encouraging. The ultrasonographic contrast media permit pharmacokinetic perfusion studies, which may be of enormous clinical importance in the study of early cancer development. Targeted imaging and therapies are becoming a reality. Microbubbles have already brought a new dimension to diagnostic ultrasonographic imaging. Many authors have described the clinical value of these agents in liver, prostate, and breast imaging, among others. Newer types of media, the nanomolecules, are now emerging as the latest in imaging enhancers as well as therapeutic agent carriers. CONCLUSIONS Although showing potential in imaging of the uterus and fallopian tubes as well as some obstetric applications, the contrast media, in particular the nanomolecules, seem to be most promising in ovarian cancer.
Collapse
Affiliation(s)
- Jacques S Abramowicz
- Department of Obstetrics and Gynecology, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Abstract
Reperfusion strategies in acute myocardial infarction and thrombotic vascular occlusion are focused on rapid and complete restoration of antegrade flow in the infarct-related artery in order to maximize myocardial salvage. Due to the limitations of fibrinolytic agents in restoration of vascular flow, ultrasonic clot dissolution alone and concomitantly with fibrinolytic, anti-thrombotic and echocardiographic contrast agents has been intensively studied during the last 2 decades. Ultrasound thrombolysis has been tested in-vitro and in-vivo as well as in patients with acute thrombotic occlusions. We review currently available techniques and methods of ultrasonic thrombolysis and present recent clinical and experimental data. The future role of ultrasonic thrombolysis and the strategy of "power thrombectomy" for treatment of acute coronary syndromes is also discussed.
Collapse
|
31
|
Tsutsui JM, Grayburn PA, Xie F, Porter TR. Drug and gene delivery and enhancement of thrombolysis using ultrasound and microbubbles. Cardiol Clin 2004; 22:299-312, vii. [PMID: 15158941 DOI: 10.1016/j.ccl.2004.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article reviews some important characteristics of microbubbles that give them therapeutic properties. It discusses the use of microbubbles and ultrasound for targeted delivery of adenovirus and nonviral vectors to myocytes and endothelial cells and for the dissolution of thrombus or potentiation of fibrinolytic agents for acutely thrombosed vessels. Potential applications, such as induction of angiogenesis, inhibition of neointimal hyperplasia, and in the setting of acute myocardial infarction and ischemic stroke,are discussed briefly.
Collapse
Affiliation(s)
- Jeane Mike Tsutsui
- Section of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, 600 South 42nd Street, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
32
|
Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56:1291-314. [PMID: 15109770 DOI: 10.1016/j.addr.2003.12.006] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/20/2003] [Indexed: 11/15/2022]
Abstract
Lipid-coated microbubbles represent a new class of agents with both diagnostic and therapeutic applications. Microbubbles have low density. Stabilization of microbubbles by lipid coatings creates low-density particles with unusual properties for diagnostic imaging and drug delivery. Perfluorocarbon (PFC) gases entrapped within lipid coatings make microbubbles that are sufficiently stable for circulation in the vasculature as blood pool agents. Microbubbles can be cavitated with ultrasound energy for site-specific local delivery of bioactive materials and for treatment of vascular thrombosis. The blood-brain barrier (BBB) can be reversibly opened without damaging the neurons using ultrasound applied across the intact skull to cavitate microbubbles within the cerebral microvasculature for delivery of both low and high molecular weight therapeutic compounds to the brain. The first lipid-coated PFC microbubble product is currently marketed for diagnostic ultrasound imaging. Clinical trials are currently in process for treatment of vascular thrombosis with ultrasound and lipid-coated PFC microbubbles (SonoLysis Therapy). Targeted microbubbles and acoustically active PFC nanoemulsions with specific ligands can be developed for detecting disease at the molecular level and targeted drug and gene delivery. Bioactive compounds can be incorporated into these carriers for site-specific delivery. Our aim is to cover the therapeutic applications of lipid-coated microbubbles and PFC emulsions in this review.
Collapse
|
33
|
Verjans JW, Narula N, Loyd A, Narula J, Vannan MA. Myocardial contrast echocardiography in acute myocardial infarction. Curr Opin Cardiol 2003; 18:346-50. [PMID: 12960465 DOI: 10.1097/00001573-200309000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Myocardial contrast echocardiography (MCE) has evolved into an important clinical tool for imaging coronary microcirculation. It can be used to delineate the spectrum of perfusion derangements that characterize acute myocardial infarction. RECENT FINDINGS Presently, MCE uses microcirculatory perfusion as the basis to distinguish myocardial necrosis and viability in the post-infarct stage. Its future role may expand to image cellular integrity, inflammation, and angiogenesis, all of which contribute to the pathophysiology of the myocardial infarction. SUMMARY This review provides an update of the current role and future clinical applications of MCE in acute myocardial infarction.
Collapse
Affiliation(s)
- Johan W Verjans
- Department of Cardiovascular Medicine and Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
34
|
Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003; 14:591-7. [PMID: 12718768 DOI: 10.1089/104303403764539369] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are morphogens implicated in embryonic and regenerative odontogenic differentiation. Gene therapy has the potential to induce reparative dentin formation for potential pulp capping. We have optimized the gene transfer of Growth/differentiation factor 11 (Gdf11)/Bmp11 plasmid DNA into dental pulp stem cells by sonoporation in vivo. Dental pulp tissue treated with plasmid pEGFP or CMV-LacZ in 5-10% Optison (Molecular Biosystems Inc., San Diego, CA) and stimulated by ultrasound (1 MHz, 0.5 W/cm(2), 30 sec) showed significant efficiency of gene transfer and high level of protein production selectively in the local region, within 500 microm of the amputated site of the pulp tissue. The Gdf11 cDNA plasmid transferred into dental pulp tissue by sonoporation in vitro, induced the expression of dentin sialoprotein (Dsp), a differentiation marker for odontoblasts. The transfection of Gdf11 by sonoporation stimulated a large amount of reparative dentin formation on the amputated dental pulp in canine teeth in vivo. These results suggest the possible use of BMPs using ultrasound-mediated gene therapy for endodontic dental treatment.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Clinical Oral Molecular Biology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Myocardial contrast echocardiography (MCE) is an emerging technique in which microbubble contrast agents are visualized in the coronary microvasculature. MCE is an ideal modality for the noninvasive evaluation of acute coronary syndromes because it provides portable, simultaneous assessment of regional wall motion and myocardial perfusion. Recent advances in microbubble contrast agents and ultrasound imaging technology have allowed new clinical applications of MCE in acute coronary syndromes. Studies suggest a promising role for MCE in the evaluation of chest pain, the diagnosis and prognosis in acute myocardial infarction, the assessment of the success of reperfusion, and the differentiation of myocardial stunning from myocardial necrosis. Potential future applications of MCE in acute coronary syndromes include the detection of inflammation and ultrasound induced thrombolysis. The following serves as a review of the current status of myocardial contrast echocardiography in acute coronary syndromes.
Collapse
Affiliation(s)
- R Parker Ward
- Department of Medicine, The University of Chicago, Illinois, 60637, USA.
| | | |
Collapse
|