1
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
3
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
4
|
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1554-1578. [PMID: 36639602 DOI: 10.1007/s12094-022-03070-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Due to their key role in the pathogenesis of cancer through the regulation of apoptosis, the B-cell leukemia/lymphoma-2 (BCL-2) family proteins have been an attractive target for cancer therapy for the past decades. Throughout the years, many Bcl-2 family inhibitors have been developed, with Venetoclax being now successfully used in treating hematological malignancies. Although their effectiveness in the treatment of solid tumors is yet to be established, some preclinical evidence indicates their possible clinical application. This review aims to summarize current data from completed clinical trials that used Bcl-2 protein family inhibitors as monotherapy or in combination with other agents for the treatment of solid malignancies. We managed to include clinical trials of various phases which analyze the pharmacokinetics and pharmacodynamics of the drugs, as well as the effectiveness and adverse effects. Active and recruiting clinical trials are also briefly presented and future prospects and challenges are discussed.
Collapse
|
5
|
Burster T, Traut R, Yermekkyzy Z, Mayer K, Westhoff MA, Bischof J, Knippschild U. Critical View of Novel Treatment Strategies for Glioblastoma: Failure and Success of Resistance Mechanisms by Glioblastoma Cells. Front Cell Dev Biol 2021; 9:695325. [PMID: 34485282 PMCID: PMC8415230 DOI: 10.3389/fcell.2021.695325] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
According to the invasive nature of glioblastoma, which is the most common form of malignant brain tumor, the standard care by surgery, chemo- and radiotherapy is particularly challenging. The presence of glioblastoma stem cells (GSCs) and the surrounding tumor microenvironment protects glioblastoma from recognition by the immune system. Conventional therapy concepts have failed to completely remove glioblastoma cells, which is one major drawback in clinical management of the disease. The use of small molecule inhibitors, immunomodulators, immunotherapy, including peptide and mRNA vaccines, and virotherapy came into focus for the treatment of glioblastoma. Although novel strategies underline the benefit for anti-tumor effectiveness, serious challenges need to be overcome to successfully manage tumorigenesis, indicating the significance of developing new strategies. Therefore, we provide insights into the application of different medications in combination to boost the host immune system to interfere with immune evasion of glioblastoma cells which are promising prerequisites for therapeutic approaches to treat glioblastoma patients.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rebecca Traut
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Zhanerke Yermekkyzy
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Katja Mayer
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
6
|
Abstract
Waldenström's macroglobulinemia is a distinct disorder characterized by a monoclonal immunoglobulin M paraprotein and morphological evidence of lymphoplasmacytic lymphoma. It is relatively rare, accounting for approximately 2% of all hematological malignancies. The aim of treatment for patients with Waldenström's macroglobulinemia should be to improve the quality and duration of life with minimal side effects in the most cost-effective manner. It is not yet clear if achievement of a complete remission confers clinical benefit and it is possible that prolonging therapy to maximal response may increase toxicity without extra benefit. Plasma exchange is indicated for the acute management of patients with severe problems due to a circulating paraprotein. There are no comparative data but alkylating agent-based treatments, combination therapy or purine analogs are all suitable choices for the initial therapy of patients requiring treatment. In younger patients, in whom high-dose treatment is contemplated, there is a role for the use of rituximab; however, it should be administered with caution in patients with high levels of immunoglobulin M paraprotein or signs of hyperviscosity because of the risk of 'flare' in the paraprotein level and consequent adverse clinical events.
Collapse
Affiliation(s)
- Stephen A Johnson
- Department of Haematology, Taunton and Somerset Hospital, Taunton, Somerset, TA1 5DA, UK.
| |
Collapse
|
7
|
Tan W. VDAC blockage by phosphorothioate oligonucleotides and its implication in apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1555-61. [PMID: 22236836 DOI: 10.1016/j.bbamem.2011.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 11/17/2022]
Abstract
Apoptosis is a crucial process that regulates the homeostasis of multicellular organisms. Impaired apoptosis contributes to cancer development, while enhanced apoptosis is detrimental in neurodegenerative diseases. The intrinsic apoptotic pathway is initiated by cytochrome c release from mitochondria. Research published in the recent decade has suggested that cytochrome c release can be influenced by the conducting states of VDAC, the channel in the mitochondrial outer membrane (MOM) responsible for metabolite flux. This review will describe the evidence that VDAC gating or blockage and subsequent changes in MOM permeability influence cytochrome c release and the onset of apoptosis. The blockage of VDAC by G3139, a proapoptotic phosphorothioate oligonucleotide, provides strong evidence for the role of VDAC in the initiation of apoptosis. The proapoptotic activity and VDAC blockage are linked in that both require the PS (phosphorothioate) modification, both are enhanced by an increase in oligonucleotide length, and both are insensitive to the nucleotide sequence. Thus, the mitochondrial outer membrane permeability regulated by VDAC gating may play an important role in mitochondrial function and in the control of apoptosis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Wenzhi Tan
- Farber Institute for Neurosciences, Weinberg Unit for ALS Research, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351:41-58. [PMID: 21210296 DOI: 10.1007/s11010-010-0709-x] [Citation(s) in RCA: 702] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, KSA
| | | | | |
Collapse
|
9
|
Gertz MA. Is antisense nonsense? Leuk Lymphoma 2009; 50:519-20. [PMID: 19373645 DOI: 10.1080/10428190902779265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part II: targeting cell cycle events, caspases, NF-κB and the proteasome. Expert Opin Drug Discov 2009; 4:907-21. [PMID: 23480539 DOI: 10.1517/17460440903055032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS), the unfolded protein response (UPR) and apoptosis signal transduction pathways are fundamental to normal cellular homeostasis and survival, but are exploited by cancer cells to promote the cancer phenotype. OBJECTIVE Collateral activation of ERS and UPR role players impact on cell growth, cell cycle arrest or apoptosis, genomic stability, tumour initiation and progression, tumour aggressiveness and drug resistance. An understanding of these processes affords promising prospects for specific cancer drug targeting of the ERS, UPR and apoptotic pathways. METHOD This review (Part II of II) brings forward the latest developments relevant to the molecular connections among cell cycle regulators, caspases, NF-κB, and the proteasome with ERS and UPR signalling cascades, their functions in apoptosis induction, apoptosis resistance and oncogenesis, and how these relationships can be exploited for targeted cancer therapy. CONCLUSION Overall, ERS, the UPR and apoptosis signalling cascades (the molecular therapeutic targets) and the development of drugs that attack these targets signify a success story in cancer drug discovery, but a more reductionist approach is necessary to determine the precise molecular switches that turn on antiapoptotic and pro-apoptotic programmes.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme, University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 959 1563 ;
| | | |
Collapse
|
11
|
Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12:55-64. [PMID: 19278896 DOI: 10.1016/j.drup.2009.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Cancers in the gastrointestinal system account for a large proportion of malignancies and cancer-related deaths with gastric cancer and colorectal cancer being the most common ones. For those patients in whom surgical resection is not possible, other therapeutic approaches are necessary. Disordered apoptosis has been linked to cancer development and treatment resistance. Apoptosis occurs via extrinsic or intrinsic signaling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis in tumor cells has been increasingly recognized as a promising approach for cancer therapy. A detailed understanding of the molecular pathways involved in the regulation of apoptosis is essential for developing novel effective therapeutic approaches. Apoptosis can be induced by many different approaches including activating cell surface death receptors (for example, Fas, TRAIL and TNF receptors), inhibiting cell survival signaling (such as EGFR, MAPK and PI3K), altering apoptosis threshold by modulating pro-apoptotic and anti-apoptotic members of the Bcl-2 family, down-regulating anti-apoptosis proteins (such as XIAP, survivin and c-IAP2), and using other pro-apoptotic agents. In this review, the authors reviewed the currently reported apoptosis-targeting approaches in gastrointestinal cancers.
Collapse
|
12
|
Leleu X, Gay J, Roccaro AM, Moreau AS, Poulain S, Dulery R, Champs BBD, Robu D, Ghobrial IM. Update on therapeutic options in Waldenström macroglobulinemia. Eur J Haematol 2009; 82:1-12. [PMID: 19087134 PMCID: PMC3133624 DOI: 10.1111/j.1600-0609.2008.01171.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Waldenström macroglobulinemia (WM) is a B-cell disorder characterized primarily by bone marrow infiltration with lymphoplasmacytic cells (LPCs), along with demonstration of an IgM monoclonal gammopathy in the blood. WM remains incurable, with 5-6 yr median overall survival for patients with symptomatic WM. The main therapeutic options include alkylating agents, nucleoside analogues, and rituximab, either in monotherapy or in combination. Studies involving combination chemotherapy are ongoing, and preliminary results are encouraging. However, there are several limitations to these approaches. The complete response rate is low and the treatment free survival are short in many patients, no specific agent or regimen has been shown to be superior to another, and no treatment has been specifically approved for WM. As such, novel therapeutic agents are needed for the treatment of WM. In ongoing efforts, we and others have sought to exploit advances made in the understanding of the biology of WM so as to develop new targeted therapeutics for this malignancy. These efforts have led to the development of proteasome inhibitors, of them bortezomib, several Akt/mTor inhibitors, such as perifosine and Rad001, and immunomodulatory agents such as thalidomide and lenalidomide. Many agents and monoclonal antibodies are currently being tested in clinical trials and seem promising. This report provides an update of the current preclinical studies and clinical efforts for the development of novel agents in the treatment of WM.
Collapse
Affiliation(s)
- Xavier Leleu
- Kirsch Laboratory for Waldenström macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute (DFCI) and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Leleu X, Roccaro AM, Moreau AS, Dupire S, Robu D, Gay J, Hatjiharissi E, Burwik N, Ghobrial IM. Waldenstrom macroglobulinemia. Cancer Lett 2008; 270:95-107. [PMID: 18555588 PMCID: PMC3133633 DOI: 10.1016/j.canlet.2008.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 02/09/2008] [Accepted: 04/28/2008] [Indexed: 12/30/2022]
Abstract
In the past years, new developments have occurred both in the understanding of the biology of Waldenstrom Macroglobulinemia (WM) and in therapeutic options for WM. WM is a B-cell disorder characterized primarily by bone marrow infiltration with lymphoplasmacytic cells, along with demonstration of an IgM monoclonal gammopathy. Despite advances in therapy, WM remains incurable, with 5-6 years median overall survival of patients in symptomatic WM. Therapy is postponed for asymptomatic patients, and progressive anemia is the most common indication for initiation of treatment. The main therapeutic options include alkylating agents, nucleoside analogues, and rituximab. Studies involving combination chemotherapy are ongoing, and preliminary results are encouraging. No specific agent or regimen has been shown to be superior to another for treatment of WM. As such, novel therapeutic agents are needed for the treatment of WM. In ongoing efforts, we and others have sought to exploit advances made in the understanding of the biology of WM so as to better target therapeutics for this malignancy. These efforts have led to the development of several novel agents including the proteasome inhibitor bortezomib, and several Akt/mTor inhibitors, perifosine and Rad001, and immunomodulatory agents such as thalidomide and lenalidomide. Studies with monoclonal antibodies are ongoing and promising including the use of alemtuzumab, SGN-70, and the APRIL/BLYS blocking protein TACI-Ig atacicept. Other agents currently being tested in clinical trials include the PKC inhibitor enzastaurin, the natural product resveratrol, as well as the statin simvastatin. This report provides an update of the current preclinical studies and clinical efforts for the development of novel agents in the treatment of WM.
Collapse
Affiliation(s)
- Xavier Leleu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Service des Maladies du Sang, Hopital Huriez, CHRU, Lille, France
| | - Aldo M. Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Department of Internal Medicine and Oncology, University of Bari Medical School, Bari, Italy
| | - Anne-Sophie Moreau
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
- Service des Maladies du Sang, Hopital Huriez, CHRU, Lille, France
| | - Sophie Dupire
- Service des Maladies du Sang, Hopital Huriez, CHRU, Lille, France
| | - Daniela Robu
- Service des Maladies du Sang, Hopital Huriez, CHRU, Lille, France
| | - Julie Gay
- Service des Maladies du Sang, Hopital Huriez, CHRU, Lille, France
| | - Evdoxia Hatjiharissi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Nicholas Burwik
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
14
|
Rom J, von Minckwitz G, Eiermann W, Sievert M, Schlehe B, Marmé F, Schuetz F, Scharf A, Eichbaum M, Sinn HP, Kaufmann M, Sohn C, Schneeweiss A. Oblimersen combined with docetaxel, adriamycin and cyclophosphamide as neo-adjuvant systemic treatment in primary breast cancer: final results of a multicentric phase I study. Ann Oncol 2008; 19:1698-705. [PMID: 18477581 DOI: 10.1093/annonc/mdn280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Combining the Bcl-2 down-regulator oblimersen with cytotoxic treatment leads to synergistic antitumor effects in preclinical trials. This multicentric phase I study was carried out to evaluate maximum tolerated dose (MTD), safety and preliminary efficacy of oblimersen in combination with docetaxel, adriamycin and cyclophosphamide as neo-adjuvant systemic treatment (NST) in primary breast cancer (PBC). METHODS Previously untreated patients with PBC T2-4a-c N0-3 M0 received one cycle of docetaxel 75 mg/m(2), adriamycin 50 mg/m(2) and cyclophosphamide 500 mg/m(2) administered on day 5 combined with escalating doses of oblimersen as a 24-h continuous infusion on days 1-7 followed by five cycles of combination of docetaxel, adriamycin and cyclophosphamide (TAC) without oblimersen every 3 weeks. Prophylactic antibiotic therapy and granulocyte colony-stimulating factor administration were used in all six cycles. Blood serum samples were taken throughout the treatment period for pharmacokinetic analysis. RESULTS Twenty-eight patients were enrolled (median age, 50 years; ductal-invasive histology, 68%; tumorsize 2-5 cm, 61%; grade 3, 43%; hormone receptor negative, 36%; Her2 positive 18%) and received oblimersen in a dose of 3 mg/kg/day (cohort I, nine patients), 5 mg/kg/day (cohort II, nine patients) and 7 mg/kg/day (cohort III, 10 patients) respectively. No dose-limiting toxicity occurred. Following oblimersen combined with TAC, the most severe toxicity was neutropenia [National Cancer Institute-Common Toxicity Criteria (NCI-CTC) grades 1-2/3/4] which developed in 0/0/56% of patients (cohort I), 11/0/56% of patients (cohort II) and 20/20/50% of patients (cohort III). No febrile neutropenia occurred. Most common adverse events (all NCI-CTC grade < or = 2) were fatigue, nausea, alopecia, headache and flue-like symptoms observed in 78% (cohort I), 89% (cohort II) and 90% (cohort III) of patients. With increasing dose of oblimersen, a higher incidence of grade IV leukopenia and neutropenia was noted. At the MTD of 7 mg/kg/day of oblimersen, serious adverse events occurred in 40% of the patients. CONCLUSION Oblimersen up to a dose of 7 mg/kg/day administered as a 24-h infusion on days 1-7 can be safely administered in combination with standard TAC on day 5 as NST in patients with PBC. The safety and preliminary efficacy warrants further evaluation of oblimersen in combination with every cycle of the TAC regimen in a randomized trial.
Collapse
Affiliation(s)
- J Rom
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
This introductory article to the review series entitled "The Cancer Cell's Power Plants as Promising Therapeutic Targets" is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., "power plants." All nucleated animal/human cells have two types of power plants, i.e., systems that make the "high energy" compound ATP from ADP and P( i ). One type is "glycolysis," the other the "mitochondria." In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen ("Warburg effect"). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing "necrotic cell death" and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83-91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269-275, 2004). A second approach is to induce only cancer cells to undergo "apoptotic cell death." Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce "necrotic," "apoptotic" or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.
Collapse
Affiliation(s)
- Peter L Pedersen
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| |
Collapse
|
16
|
Abstract
AbstractIn the past 36 months, new developments have occurred both in the understanding of the biology of Waldenström macroglobulinemia (WM) and in therapeutic options for WM. Here, we review the classification, clinical features, and diagnostic criteria of the disease. WM is a B-cell neoplasm characterized by lymphoplasmacytic infiltration of the bone marrow and a monoclonal immunoglobulin M (IgM) protein. The symptoms of WM are attributable to the extent of tumor infiltration and to elevated IgM levels. The most common symptom is fatigue attributable to anemia. The prognostic factors predictive of survival include the patient's age, β2-microglobulin level, monoclonal protein level, hemoglobin concentration, and platelet count. Therapy is postponed for asymptomatic patients, and progressive anemia is the most common indication for initiation of treatment. The main therapeutic options include alkylating agents, nucleoside analogues, and rituximab. Studies involving combination chemotherapy are ongoing, and preliminary results are encouraging. No specific agent or regimen has been shown to be superior to another for treatment of WM. Novel agents such as bortezomib, perifosine, atacicept, oblimersen sodium, and tositumomab show promise as rational targeted therapy for WM.
Collapse
Affiliation(s)
- Arun Vijay
- Austin Medical Center-Mayo Health System, Austin, MN, USA
| | | |
Collapse
|
17
|
Link BK, Ballas ZK, Weisdorf D, Wooldridge JE, Bossler AD, Shannon M, Rasmussen WL, Krieg AM, Weiner GJ. Oligodeoxynucleotide CpG 7909 Delivered as Intravenous Infusion Demonstrates Immunologic Modulation in Patients With Previously Treated Non-Hodgkin Lymphoma. J Immunother 2006; 29:558-68. [PMID: 16971811 DOI: 10.1097/01.cji.0000211304.60126.8f] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oligodeoxynucleotides containing CpG motifs (CpG ODN) can alter various immune cell subsets important in antibody therapy of malignancy. We undertook a phase I trial of CPG 7909 (also known as PF-3512676) in patients with previously treated lymphoma with the primary objective of evaluating safety across a range of doses, and secondary objectives of evaluating immunomodulatory effects and clinical effects. Twenty-three patients with previously treated non-Hodgkin lymphoma received up to 3 weekly 2-hour intravenous (IV) infusions of CPG ODN 7909 at dose levels 0.01 to 0.64 mg/kg. Evaluation of immunologic parameters and clinical endpoints occurred for 6 weeks. Infusion-related toxicity included grade 1 nausea, hypotension, and IV catheter discomfort. Serious adverse hematologic events observed more than once included anemia (2=Gr3, 2=Gr4), thrombocytopenia (4=Gr3), and neutropenia (2=Gr3), and were largely judged owing to progressive disease. Immunologic observations included: (1) The mean ratio of NK-cell concentrations compared with pretreatment at day 2 was 1.44 (95% CI=0.94-1.94) and at day 42 was 1.53 (95% CI=1.14-1.91); (2) NK activity generally increased in subjects; and (3) Antibody-dependent cellular cytotoxicity activity increased in select cohorts. No clinical responses were documented radiographically at day 42. Two subjects demonstrated late response. We conclude CpG 7909 can be safely given as a 2-hour IV infusion to patients with previously treated non-Hodgkin lymphoma at doses that have immunomodulatory effects.
Collapse
Affiliation(s)
- Brian K Link
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Preclinical and clinical studies indicate a role for AS ODNs (antisense oligonucleotides) as therapeutics for malignant diseases. The principle of antisense technology is the sequence-specific binding of an AS ODN to the target mRNA, resulting in a translational arrest. The specificity of hybridization makes antisense strategy attractive to selectively modulate the expression of genes involved in the pathogenesis of malignant diseases. One antisense drug has been approved for local therapy of CMV (cytomegalovirus) retinitis, and a number of AS ODNs are currently being tested in clinical trials, including AS ODN targeting Bcl-2, XIAP (X-linked inhibitor of apoptosis protein) and TGF-beta-2 (transforming growth factor beta-2). AS ODNs are well tolerated and may have therapeutic activity. In particular, an AS ODN to Bcl-2 has been tested in phase III clinical trials in chronic lymphocytic leukaemia, multiple myeloma and malignant melanoma. In this review, therapeutic concepts, clinical studies and new promising molecular targets to treat malignancies with AS ODNs are summarized.
Collapse
Affiliation(s)
- Ingo Tamm
- Department for Haematology and Oncology, Charité, Campus Virchow, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
19
|
Meidan VM, Glezer J, Salomon S, Sidi Y, Barenholz Y, Cohen JS, Lilling G. Specific lipoplex-mediated antisense against Bcl-2 in breast cancer cells: a comparison between different formulations. J Liposome Res 2006; 16:27-43. [PMID: 16556548 DOI: 10.1080/08982100500528685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
Collapse
Affiliation(s)
- Victor M Meidan
- Department of Pharmaceutical Sciences, SIBS, University of Strathclyde, Glasgow, G4 0NR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Johnson SA, Birchall J, Luckie C, Oscier DG, Owen RG. Guidelines on the management of Waldenstrom macroglobulinaemia*. Br J Haematol 2006; 132:683-97. [PMID: 16487169 DOI: 10.1111/j.1365-2141.2005.05948.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Gertz MA, Geyer SM, Badros A, Kahl BS, Erlichman C. Early results of a phase I trial of oblimersen sodium for relapsed or refractory Waldenstrom's macroglobulinemia. ACTA ACUST UNITED AC 2005; 5:282-4. [PMID: 15794866 DOI: 10.3816/clm.2005.n.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oblimersen sodium is an antisense oligonucleotide to the first 6 codons of the B-cell leukemia gene 2 (bcl-2) open reading frame. It prevents the expression of the bcl-2 gene product and leads to apoptosis in cells that express Bcl-2. bcl-2 is one of the major apoptosis regulatory gene families and is found in a variety of low-grade B-cell non-Hodgkin's lymphomas. The in vitro use of oblimersen in Waldenstrom's macroglobulinemia (WM) cell line results in enhanced toxicity when exposed to fludarabine, dexamethasone, or rituximab. Oblimersen should also enhance the cytotoxic effect of chemotherapy in WM. Presented herein are early data on the phase I portion of a phase I/II study of oblimersen in WM to identify the maximum tolerated dose and to evaluate response in patients with symptomatic WM.
Collapse
Affiliation(s)
- Morie A Gertz
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Waldenström macroglobulinemia is a rare monoclonal gammopathy-associated lymphoplasmacytic lymphoma. Its incidence is only 4 per million per year. This review contains the known published literature specifically on the available management tools for Waldenström macroglobulinemia and is designed to assist clinicians in making management decisions for patients with this uncommon disorder.
Collapse
Affiliation(s)
- Morie A Gertz
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
23
|
Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP. Diagnosis and management of Waldenstrom's macroglobulinemia. J Clin Oncol 2005; 23:1564-77. [PMID: 15735132 DOI: 10.1200/jco.2005.03.144] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To review the diagnostic criteria, prognostic factors, response criteria, and treatment options of patients with Waldenstrom's macroglobulinemia (WM). METHODS A review of published reports was facilitated by the use of a MEDLINE computer search and by manual search of the Index Medicus. RESULTS WM should be regarded as a distinct clinicopathologic entity and confined to those patients with lymphoplasmacytoid lymphoma who have demonstrable serum immunoglobulin M monoclonal protein. Treatment decisions should rely on specific clinical and laboratory criteria. Initiation of therapy should not be based on serum monoclonal protein levels per se. The three main choices for systemic primary treatment of symptomatic patients with WM include alkylating agents (chlorambucil), nucleoside analogs (fludarabine and cladribine), and the monoclonal antibody rituximab. There are no data from prospective randomized studies to recommend the use of one first-line agent over another, although consideration of a patient's candidacy for autologous stem-cell transplantation (ASCT) should be taken into account to avoid stem cell-damaging agents. There are preliminary data to suggest that combinations of nucleoside analogs and alkylating agents with or without rituximab may improve response rates at the expense of higher toxicity. CONCLUSION WM is a distinct low-grade lymphoproliferative disorder. When therapy is indicated, alkylating agents, nucleoside analogs, and rituximab are reasonable choices. Several factors, including the presence of cytopenias, need for rapid disease control, candidacy for ASCT, age, and comorbidities, should be taken into consideration when choosing the most appropriate primary treatment.
Collapse
Affiliation(s)
- Meletios A Dimopoulos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, 14561, Greece.
| | | | | | | |
Collapse
|
24
|
Chanan-Khan A. Preclinical evaluation of antisense bcl-2 as a chemosensitizer for patients with gastric carcinoma. Cancer 2004; 16:581-5. [PMID: 15627020 DOI: 10.1097/01.cco.0000142074.67968.eb] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Because bcl-2 is a critical factor for anticancer drug-induced apoptosis, the authors conducted a preclinical evaluation of antisense (AS) bcl-2 as an enhancer of the chemotherapeutic effect in the treatment of patietns with gastric carcinoma. METHODS AS bcl-2 was used with 18-mer phosphorothiated oligonucleotides in the MKN-45 gastric carcinoma cell line. Drug sensitivity in vitro was evaluated using the methyl-thiazoldiphenyl tetrazolium assay, and antitumor effects in vivo were evaluated using the nude mouse xenograft. Apoptosis was determined with the terminal deoxyuridine triphosphate nick-end labeling assay. AS bcl-2 in vitro was treated with lipofectin, whereas it was administered intraperitoneally for 6 consecutive days twice every 2 weeks in vivo. Anticancer drugs were administered intraperitoneally four times per week. RESULTS bcl-2 was down-regulated to 60% of its initial value after treatment with 1.0 muM AS bcl-2 compared with the controls of random and mismatched oligonucleotides. Drug sensitivity to doxorubicin, cisplatin, and paclitaxel (TXL) was increased 3-4-fold when used in combination with AS bcl-2, which was determined with 50% inhibitory concentration values, compared with the control group. Increased drug sensitivity was associated with apoptosis, which increased in Bax and poly-adenosine diphosphate (ADP-ribose) polymerase and decreased in phosphorylated Akt (pAkt). The antitumor effect of cisplatin and TXL in vivo was enhanced significantly in combination with AS bcl-2. Down-regulation of bcl-2 was observed on Day 4 after the treatment with AS bcl-2. CONCLUSIONS Combination treatment with AS bcl-2 and anticancer drugs, including cisplatin and TXL, may be a new strategy for enhancing chemotherapeutic effects in the treatment of gastric carcinoma.
Collapse
|
25
|
Chanan-Khan A, Czuczman MS. Bcl-2 antisense therapy in B-cell malignant proliferative disorders. Curr Treat Options Oncol 2004; 5:261-7. [PMID: 15233903 DOI: 10.1007/s11864-004-0017-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Clinical Trials as Topic
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Female
- Humans
- Infusions, Intravenous
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Lymphoma, Non-Hodgkin/diagnosis
- Lymphoma, Non-Hodgkin/drug therapy
- Male
- Multiple Myeloma/diagnosis
- Multiple Myeloma/drug therapy
- Multiple Myeloma/mortality
- Neoplasm Staging
- Oligonucleotides, Antisense/therapeutic use
- Prognosis
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Risk Assessment
- Survival Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- Asher Chanan-Khan
- Department of Medicine, Lymphoma/Myeloma Section, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
26
|
Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 2004; 31:119-28. [PMID: 15008953 DOI: 10.1111/j.1440-1681.2004.03975.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Proteins of the Bcl-2 family are central regulators of apoptosis and are thought to act primarily on the mitochondria. 2. Members of the Bcl-2 family possess either anti-apoptotic or pro-apoptotic function. They are characterized by the presence of conserved sequence motifs, known as Bcl-2 homology (BH) domains. Anti-apoptotic members share all four BH domains, designated as BH1-4; the multidomain pro-apoptotic members contain BH1-3 domains, whereas another subgroup of pro-apoptotic members only have a BH3 domain. 3. The BH3-only proteins act as sensors for distinct apoptosis pathways, whereas multidomain pro-apoptotic Bax and Bak are executioners of death orders relayed by the BH3-only proteins. 4. Anti-apoptotic Bcl-2 family members appear to function, at least in part, by interacting with and antagonizing pro-apoptotic family members. The BH1-3 domains of BclXL form an elongated hydrophobic groove, which is the docking site for the BH3 domains of pro-apoptotic binding partners. 5. The deregulation of the various Bcl-2 proteins has been implicated in many pathological conditions. 6. Knowledge derived from the understanding of the function and regulation of the Bcl-2 family of proteins has allowed us to contemplate new therapeutic strategies for diseases where apoptosis signalling mechanisms can potentially be manipulated. 7. The anti-apoptotic Bcl-2 members have been targeted successfully using an antisense approach, BH3-peptides and small molecular weight chemicals that are inhibitors of their anti-apoptotic function.
Collapse
Affiliation(s)
- Shing-Leng Chan
- Institute of Molecular and Cell Biology and Department of Pharmacology, National University of Singapore, Singapore
| | | |
Collapse
|
27
|
Iqbal Z, Siddiqui RT, Qureshi JA. Two different point mutations in ABL gene ATP-binding domain conferring Primary Imatinib resistance in a Chronic Myeloid Leukemia (CML) patient: A case report. Biol Proced Online 2004; 6:144-148. [PMID: 15243647 PMCID: PMC443563 DOI: 10.1251/bpo83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 06/17/2004] [Accepted: 06/17/2004] [Indexed: 11/23/2022] Open
Abstract
Imatinib (Gleevec) is the effective therapy for BCR-ABL positive CML patients. Point mutations have been detected in ATP-binding domain of ABL gene which disturbs the binding of Gleevec to this target leading to resistance. Detection of mutations is helpful in clinical management of imatinib resistance. We established a very sensitive (ASO) PCR to detect mutations in an imatinib-resistant CML patient. Mutations C944T and T1052C were detected which cause complete partial imatinib resistance, respectively. This is the first report of multiple point mutations conferring primary imatinib resistance in same patient at the same time. Understanding the biological reasons of primary imatinib resistance is one of the emerging issues of pharmacogenomics and will be helpful in understanding primary resistance of molecularly-targeted cancer therapies. It will also be of great utilization in clinical management of imatinib resistance. Moreover, this ASO-PCR assay is very effective in detecting mutations related to imatinib resistance.
Collapse
Affiliation(s)
- Zafar Iqbal
- National Institute for Biotechnology & Genetic Engineering (NIBGE). Jhang Road, Faisalabad. Pakistan
| | - Rubina T. Siddiqui
- National Institute for Biotechnology & Genetic Engineering (NIBGE). Jhang Road, Faisalabad. Pakistan
| | - Javed A. Qureshi
- National Institute for Biotechnology & Genetic Engineering (NIBGE). Jhang Road, Faisalabad. Pakistan
| |
Collapse
|
28
|
Abstract
While chemotherapy based on alkylating agents has been the standard treatment of chronic lymphocytic leukemia (CLL) for decades, purine analogues and their combinations have emerged as effective new therapies for previously untreated and pretreated patients. As single agents, fludarabine and cladribine are the most promising, showing higher remission rates compared to chlorambucil. For younger and physically fit patients, the combination of fludarabine and cyclophosphamide has shown benefit. Fludarabine plus epirubicin appears equally potent. The addition of monoclonal antibodies, such as rituximab and alemtuzumab, to purine analogues alone or in combination seems to be even more effective for chemotherapy-naive and pretreated CLL patients. Another promising agent in the armamentarium of therapies for CLL is bendamustine, which has properties of both an alkylating agent and a purine analogue. Clinical trials are ongoing with novel drugs that interfere with cell cycle regulation and signaling molecules in CLL, including flavopiridol, UCN-01, bryostatin 1, depsipeptide, and oblimersen. It remains to be seen whether these chemotherapeutic approaches offer real benefit for patients by prolonging survival with an improved quality of life.
Collapse
Affiliation(s)
- C-M Wendtner
- Medical Clinic I, University of Cologne, Germany
| | | | | |
Collapse
|