1
|
van der Feen DE, Bartelds B, de Boer RA, Berger RMF. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease. Heart 2018; 105:276-282. [DOI: 10.1136/heartjnl-2018-314025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) can be reversed by early shunt closure, but this potential is lost beyond a certain point of no return. Therefore, it is crucial to accurately assess the reversibility of this progressive pulmonary arteriopathy in an early stage. Reversibility assessment is currently based on a combination of clinical symptoms and haemodynamic variables such as pulmonary vascular resistance. These measures, however, are of limited predictive value and leave many patients in the grey zone. This review provides a concise overview of the mechanisms involved in flow-dependent progression of PAH in CHD and evaluates existing and future alternatives to more directly investigate the stage of the pulmonary arteriopathy. Structural quantification of the pulmonary arterial tree using fractal branching algorithms, functional imaging with intravascular ultrasound, nuclear imaging, putative new blood biomarkers, genetic testing and the potential for transcriptomic analysis of circulating endothelial cells and educated platelets are being reviewed.
Collapse
|
2
|
Boehme J, Sun X, Tormos KV, Gong W, Kellner M, Datar SA, Kameny RJ, Yuan JXJ, Raff GW, Fineman JR, Black SM, Maltepe E. Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. Am J Physiol Heart Circ Physiol 2016; 311:H944-H957. [PMID: 27591215 PMCID: PMC5114466 DOI: 10.1152/ajpheart.00040.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
Vascular cell hyperproliferation and metabolic reprogramming contribute to the pathophysiology of pulmonary arterial hypertension (PAH). An important cause of PAH in children with congenital heart disease (CHD) is increased pulmonary blood flow (PBF). To better characterize this disease course we studied early changes in pulmonary artery smooth muscle cell (PASMC) proliferation and metabolism using a unique ovine model of pulmonary overcirculation. Consistent with PAH in adults, PASMCs derived from 4-wk-old lambs exposed to increased PBF (shunt) exhibited increased rates of proliferation. While shunt PASMCs also exhibited significant decreases in mitochondrial oxygen consumption, membrane potential, and tricarboxylic acid (TCA) cycle function, suggesting a switch to Warburg metabolism as observed in advanced PAH in adults, they unexpectedly demonstrated decreased glycolytic lactate production, likely due to enhanced flux through the pentose phosphate pathway (PPP). This may be a response to the marked increase in NADPH oxidase (Nox) activity and decreased NADPH/NADP+ ratios observed in shunt PASMCs. Consistent with these findings, pharmacological inhibition of Nox activity preferentially slowed the growth of shunt PASMCs in vitro. Our results therefore indicate that PASMC hyperproliferation is observed early in the setting of pulmonary overcirculation and is accompanied by a unique metabolic profile that is independent of HIF-1α, PDHK1, or increased glycolytic flux. Our results also suggest that Nox inhibition may help prevent pulmonary overcirculation-induced PAH in children born with CHD.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Electron Spin Resonance Spectroscopy
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycolysis
- Hypertension, Pulmonary/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Membrane Potential, Mitochondrial
- Metabolomics
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Oxygen Consumption
- Pentose Phosphate Pathway
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Circulation
- Reactive Oxygen Species/metabolism
- Sheep
- Sheep, Domestic
- Superoxides/metabolism
Collapse
Affiliation(s)
- Jason Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Xutong Sun
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Kathryn V Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Manuela Kellner
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Rebecca Johnson Kameny
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, California
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California;
| |
Collapse
|
3
|
Ishibashi N, Scafidi J, Murata A, Korotcova L, Zurakowski D, Gallo V, Jonas RA. White matter protection in congenital heart surgery. Circulation 2012; 125:859-71. [PMID: 22247493 DOI: 10.1161/circulationaha.111.048215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neurodevelopmental delays in motor skills and white matter (WM) injury have been documented in congenital heart disease and after pediatric cardiac surgery. The lack of a suitable animal model has hampered our understanding of the cellular mechanisms underlying WM injury in these patients. Our aim is to identify an optimal surgical strategy for WM protection to reduce neurological injury in congenital heart disease patients. METHODS AND RESULTS We developed a porcine cardiopulmonary bypass model that displays area-dependent WM maturation. In this model, WM injury was identified after cardiopulmonary bypass-induced ischemia-reperfusion injury. The degree of injury was inversely correlated with the maturation stage, which indicates maturation-dependent vulnerability of WM. Within different oligodendrocyte developmental stages, we show selective vulnerability of O4+ preoligodendrocytes, whereas oligodendrocyte progenitor cells were resistant to insults. This indicates that immature WM is vulnerable to cardiopulmonary bypass-induced injury but has an intrinsic potential for recovery mediated by endogenous oligodendrocyte progenitor cells. Oligodendrocyte progenitor cell number decreased with age, which suggests that earlier repair allows successful WM development. Oligodendrocyte progenitor cell proliferation was observed within a few days after cardiopulmonary bypass-induced ischemia-reperfusion injury; however, by 4 weeks, arrested oligodendrocyte maturation and delayed myelination were detected. Logistic model confirmed that maintenance of higher oxygenation and reduction of inflammation were effective in minimizing the risk of injury at immature stages of WM development. CONCLUSIONS Primary repair in neonates and young infants potentially provides successful WM development in congenital heart disease patients. Cardiac surgery during this susceptible period should avoid ischemia-reperfusion injury and minimize inflammation to prevent long-term WM-related neurological impairment.
Collapse
Affiliation(s)
- Nobuyuki Ishibashi
- Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010-2970, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This review focuses on right ventricular anatomy and function and the significance of ventricular interdependence in the response of the right ventricle to an increase in afterload. This is followed by a discussion of the pathophysiology of right ventricular failure in pulmonary arterial hypertension as well as in other clinical syndromes of pulmonary hypertension. Pulmonary hypertension is common in critically ill children and is associated with several conditions. Regardless of the etiology, an increase in right ventricular afterload leads to a number of compensatory changes in cardiovascular physiology. These changes are not altogether intuitive and require an understanding of right ventricular physiology and ventricular interdependence to optimize the care of these patients.
Collapse
|
5
|
Abstract
Major advances have been made in the understanding and treatment of pulmonary hypertension in the last few years. Without treatment (medication) for idiopathic pulmonary arterial hypertension, which is a rare and potentially fatal condition, the survival time is only about 3 years after diagnosis. However, if pulmonary hypertension is secondary to other causes such as congenital heart disease, it is possible to survive for 30 years or more without treatment. The condition can affect children at any age, from fetal life to adulthood. Patients with pulmonary hypertension can present to the respiratory pediatrician with unresponsive asthma, to the neurologist with faints, or to the general pediatrician with failure to thrive. Over the last few years there have been significant developments in the available therapy for managing this complicated disease. There is now a generally recognized ladder of long-term therapy for chronic pulmonary hypertension. Treatment can start with oxygen at home at night or even during the day. Next is the use of oral phosphodiesterase inhibitors, mostly type V, such as sildenafil, which enhance endogenous nitric oxide. More potent are the endothelin receptor antagonists and the most potent are the prostanoids, especially epoprostenol, which is given by constant intravenous infusion. In addition to interventional catheterization with atrial septostomy, these agents have improved the prognostic outlook. This article reviews the current knowledge about the etiology, investigation, and treatment of children with pulmonary hypertension in the clinical setting.
Collapse
Affiliation(s)
- Robert Tulloh
- Department of Congenital Heart Disease, Bristol Royal Hospital for Children and Bristol Royal Infirmary, Bristol, England.
| |
Collapse
|
6
|
Abstract
Idiopathic pulmonary arterial hypertension is a rare and potentially fatal condition. Without treatment, survival is only approximately 2.8 years from diagnosis. However, if the pulmonary hypertension is secondary to other causes, especially to congenital heart disease, it is possible to survive for 30 years or more without treatment. In recent years, remarkable progress has been made, risk factors have been identified and improved imaging techniques, including echocardiography, computer tomography and magnetic resonance imaging, are available. The condition can affect children at any age from fetal life through to adulthood. Patients can present to the respiratory pediatrician with unresponsive asthma, to the neurologist with faints or to the general pediatrician with failure to thrive. Over the last few years there have been significant developments in the available therapy for managing this complicated disease, which have improved the prognostic outlook, such as oral bosentan and sildenafil, intravenous epoprostenol and interventional catheterization with atrial septostomy. This article reviews the current knowledge about causation, investigation and treatment of children with pulmonary hypertension in the clinical setting.
Collapse
Affiliation(s)
- Robert Tulloh
- Department of Congenital Heart Disease, Bristol Royal Hospital for Children and Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8BJ, UK.
| |
Collapse
|
7
|
Abstract
Pulmonary hypertension (PHT) is a well recognised feature of untreated congenital heart disease. This article will review the causes, known mechanisms, appropriate investigations and current therapies for PHT. The reader will understand the difference between PHT due to high pulmonary blood flow and PHT that is due to high pulmonary vascular resistance. The former is best treated by surgical or catheter intervention, whereas for the latter (Eisenmenger syndrome) only palliation is possible with medication or transplantation. Echocardiography and electrocardiography (ECG) should be performed in any child where there is a possibility of pulmonary hypertension, especially with long standing chronic lung disease and minor left to right shunt. Often these children may have dual pathology and their investigation and management may be a complex interaction between cardiac and respiratory therapists. New treatments and new techniques of assessment are now available and this may lead to improved recognition of PHT and prevention of long term disability as a result.
Collapse
Affiliation(s)
- Robert M R Tulloh
- Department of Congenital Heart Disease, Paul O'Gorman Building, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK
| |
Collapse
|
8
|
Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 2005; 111:2988-96. [PMID: 15927975 PMCID: PMC1934986 DOI: 10.1161/circulationaha.104.491456] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. METHODS AND RESULTS The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. CONCLUSIONS Deficiency of the ET(B) receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ET(B) receptor in pulmonary vascular homeostasis.
Collapse
Affiliation(s)
- D Dunbar Ivy
- Section of Pediatric Cardiology, University of Colorado School of Medicine and Children's Hospital, Denver 80218, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Sheila G Haworth
- Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
10
|
Abstract
Pulmonary arterial hypertension (PAH) is a recognized complication of congenital systemic to pulmonary arterial cardiac shunts. The prognosis of PAH in this situation is better than primary or other secondary forms of PAH. Our knowledge of the pathophysiology of PAH complicating congenital heart disease has evolved over the past decade. Despite differences in etiology and pathobiology, therapies that have proven successful for primary PAH may benefit this group of patients.
Collapse
Affiliation(s)
- John T Granton
- Department of Medicine, University of Toronto, Division of Respirology and Critical Care Medicine Programme, University Health Network, 10 EN-220, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4.
| | | |
Collapse
|