1
|
Verma R, Agarwal AK, Sakhuja P, Sharma PC. Microsatellite instability in mismatch repair and tumor suppressor genes and their expression profiling provide important targets for the development of biomarkers in gastric cancer. Gene 2019; 710:48-58. [PMID: 31145962 DOI: 10.1016/j.gene.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 12/24/2022]
Abstract
We evaluated microsatellite instability (MSI) in selected mismatch repair (MMR) and tumor suppressor (TS) genes with a view to exploring genetic changes associated with the occurrence of gastric cancer (GC). Moreover, expression of MSI positive genes was measured to get insights into molecular events operating in the tumor microenvironment. We anticipated discovering new molecular targets with potential as molecular biomarkers of gastric cancer. Of the 13 genes screened, we observed 15% to 52.5% MSI at eight microsatellite loci located in 3' UTR and coding regions of six genes (TGFBR2, PDCD4, MLH3, DLC1, MSH6, and MSH3). The union probability of different combinations of unstable microsatellite loci unveiled a set of four MSI markers from TGFBR2, PDCD4, MLH3, and MSH3 genes that allows detection of up to 85% incidences of GC. Significant downregulation of MLH3, PDCD4, TGFBR2, and DLC1 genes was observed in tumor tissues. Protein structure analyses of two unexplored targets, MSH3 (TG4) and MSH6 (A7), with MSI in the coding region, exhibited the loss of essential domains in the encoded aberrant protein hampering its function in the MMR machinery. The molecular markers thus identified could potentially be used as MSI biomarkers for the diagnosis of gastric tumorigenesis after further validation.
Collapse
Affiliation(s)
- Renu Verma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Anil K Agarwal
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Hospital, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, Govind Ballabh Pant Hospital, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India.
| |
Collapse
|
2
|
Javid M, Sasanakietkul T, Nicolson NG, Gibson CE, Callender GG, Korah R, Carling T. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers. World J Surg 2018; 42:358-366. [PMID: 29075860 DOI: 10.1007/s00268-017-4299-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. METHODS MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. RESULTS Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p < 0.05 two-tailed). Rate of LOH, a measure of genomic instability, was higher in PMS2-deficient PTCs (median 3 and 1, respectively; U = 26, p < 0.05 two-tailed). No correlation was noted between MMR deficiency and clinical characteristics. CONCLUSIONS MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.
Collapse
Affiliation(s)
- Mahsa Javid
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA.,Division of Oncologic and Endocrine Surgery, Department of Surgery, Medical University of South Carolina, MSC 295, Charleston, SC, 29425-2503, USA
| | - Thanyawat Sasanakietkul
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA
| | - Norman G Nicolson
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA
| | - Courtney E Gibson
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA
| | - Glenda G Callender
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA
| | - Reju Korah
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA
| | - Tobias Carling
- Yale Endocrine Neoplasia Laboratory, Section of Endocrine Surgery, Department of Surgery, Yale University School of Medicine, PO Box 208062, FMB 130A, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
3
|
Vageli DP, Giannopoulos S, Doukas SG, Kalaitzis C, Giannakopoulos S, Giatromanolaki A, Koukoulis GK, Touloupidis S. Mismatch repair hMSH2, hMLH1, hMSH6 and hPMS2 mRNA expression profiles in precancerous and cancerous urothelium. Oncol Lett 2012; 5:283-294. [PMID: 23255936 DOI: 10.3892/ol.2012.979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/26/2012] [Indexed: 01/15/2023] Open
Abstract
Changes in the expression of the mismatch repair (MMR) genes hMSH2, hMLH1, hMSH6 and hPMS2 reflect dysfunction of the DNA repair system that may allow the malignant transformation of tissue cells. The aim of the present study was to address the mRNA expression profiles of the mismatch DNA repair system in cancerous and precancerous urothelium. This is the first study to quantify MMR mRNA expression by applying quantitative real-time PCR (qPCR) and translate the results to mRNA phenotypic profiles (r, reduced; R, regular or elevated) in bladder tumors [24 urothelial cell carcinomas (UCCs) and 1 papillary urothelial neoplasm of low malignant potential (PUNLMP)] paired with their adjacent normal tissues (ANTs). Genetic instability analysis was applied at polymorphic sites distal or close to the hMSH2 and hMLH1 locus. Presenting our data, reduced hMSH2, hMSH6 and hPMS2 mRNA expression profiles were observed in cancerous and precancerous urothelia. Significantly, the ANTs of UCCs revealed the highest percentages of reduced hMSH2 (r(2)), hMSH6 (r(6)) and hPMS2 (p(2)) mRNA phenotypes relative to their tumors (P<0.03). In particular, combined r(2)r(6) (P<0.02) presented a greater difference between ANTs of low-grade UCCs vs. their tumors compared with ANTs of high-grade UCCs (P= 0.000). Reduced hMLH1 (r(1)) phenotype was not expressed in precancerous or cancerous urothelia. The hMSH6 mRNA was the most changed in UCCs (47.8%), while hMSH2, hMLH1 and hPMS2 showed overexpression (47.8, 35 and 30%, respectively) that was associated with gender and histological tumor grading or staging. Genetic instability was rare in polymorphic regions distal to hMLH1. Our data reveal a previously unrecognized hMSH2 and hMSH6 mRNA combined phenotype (r(2)r(6)) correlated with a precancerous urothelium and show that hMLH1 is transcriptionally activated in precancerous or cancerous urothelium. In the present study, it is demonstrated that reduction of hMSH6 mRNA is a frequent event in bladder tumorigenesis and reflects a common mechanism of suppression with hMSH2, while alterations of hMSH2 or hMLH1 mRNA expression in UCCs does not correlate with the allelic imbalance of polymorphic regions harboring the genes.
Collapse
Affiliation(s)
- Dimitra P Vageli
- Department of Pathology, Medical School, University of Thessaly, Larissa, Thessaly 41110
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Xue Y, Li L, Zhang D, Wu K, Chen Y, Zeng J, Wang X, He D. Twisted epithelial-to-mesenchymal transition promotes progression of surviving bladder cancer T24 cells with hTERT-dysfunction. PLoS One 2011; 6:e27748. [PMID: 22110753 PMCID: PMC3216997 DOI: 10.1371/journal.pone.0027748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/24/2011] [Indexed: 12/21/2022] Open
Abstract
Background Human cancer cells maintain telomeres to protect cells from senescence through telomerase activity (TA) or alternative lengthening of telomeres (ALT) in different cell types. Moreover, cellular senescence can be bypassed by Epithelial-to-mesenchymal transition (EMT) during cancer progression in diverse solid tumors. However, it has not been elucidated the characteristics of telomere maintenance and progression ability after long-term culture in bladder cancer T24 cells with hTERT dysfunction. Methodology/Principal Findings In this study, by using a dominant negative mutant human telomerase reverse transcriptase (hTERT) vector to inhibit TA in bladder cancer T24 cells, we observed the appearance of long phenotype of telomere length and the ALT-associated PML body (APB) complex after the 27th passage, indicating the occurrence of ALT-like pathway in surviving T24/DN868A cells with telomerase inhibition. Meanwhile, telomerase inhibition resulted in significant EMT as shown by change in cellular morphology concomitant with variation of EMT markers. Consistently, the surviving T24/DN868A cells showed increased progression ability in vitro and in vivo. In addition, we found Twist was activated to mediate EMT in surviving T24/DN868A samples. Conclusions/Significance Taken together, our findings indicate that bladder cancer T24 cells may undergo the telomerase-to-ALT-like conversion and promote cancer progression at advanced stages through promoting EMT, thus providing novel possible insight into the mechanism of resistance to telomerase inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yan Xue
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Li
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dong Zhang
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yule Chen
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Zeng
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
5
|
Sanyal S, De Verdier PJ, Steineck G, Larsson P, Onelöv E, Hemminki K, Kumar R. Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncol 2009; 46:31-41. [PMID: 17438703 DOI: 10.1080/02841860600812693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We conducted a follow-up study on 311 patients with urinary bladder neoplasms to investigate the association of polymorphisms in DNA repair and cell growth regulatory genes with the clinical outcomes of this disease. We found that patients carrying the variant allele of XPD (K751Q) polymorphism were at lower risk of death (p = 0.04) than the noncarriers. Patients that were simultaneous carriers of variant alleles from XPD (K751Q) and XPC (K939Q) polymorphisms, showed lower risk of death than the other patients (p = 0.001). The variant allele carriers of MSH6 (G39E) polymorphism showed a higher risk for highly malignant disease (TaG3 +T1) than the non-carriers (p = 0.03). The variant allele carriers of XRCC1 (R399Q) polymorphism showed lower risk for recurrence (TaG2; p = 0.05) and death (T2+; p = 0.03) after instillation and radiotherapy than the non-carriers. After radiotherapy, an inverse association of the variant allele of OGG1 (S326C) polymorphism was observed with the risk of death (T2 +; p = 0.04). A significant low-risk for stage progression (p = 0.03) was observed in patients carrying the variant allele of H-ras (H27H) polymorphism. Our results are consistent with the notion that the XPD (K751Q) polymorphism either individually or in combination with the XPC (K939Q) polymorphism modulates the risk of death in patients with urinary bladder neoplasms.
Collapse
Affiliation(s)
- Somali Sanyal
- Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
6
|
Andrew AS, Gui J, Sanderson AC, Mason RA, Morlock EV, Schned AR, Kelsey KT, Marsit CJ, Moore JH, Karagas MR. Bladder cancer SNP panel predicts susceptibility and survival. Hum Genet 2009; 125:527-39. [PMID: 19252927 PMCID: PMC2763504 DOI: 10.1007/s00439-009-0645-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
Bladder cancer is the fourth most common malignancy in men and the eighth most common in women in western countries. Single nucleotide polymorphisms (SNPs) in genes that regulate telomere maintenance, mitosis, inflammation, and apoptosis have not been assessed extensively for this disease. Using a population-based study with 832 bladder cancer cases and 1,191 controls, we assessed genetic variation in relation to cancer susceptibility or survival. Findings included an increased risk associated with variants in the methyl-metabolism gene, MTHFD2 (OR 1.7 95% CI 1.3-2.3), the telomerase TEP1 (OR 1.8 95% CI 1.2-2.6) and decreased risk associated with the inflammatory response gene variant IL8RB (OR 0.6 95% CI 0.5-0.9) compared to wild-type. Shorter survival was associated with apoptotic gene variants, including CASP9 (HR 1.8 95% CI 1.1-3.0). Variants in the detoxification gene EPHX1 experienced longer survival (HR 0.4 (95% CI 0.2-0.8). These genes can now be assessed in multiple study populations to identify and validate SNPs appropriate for clinical use.
Collapse
Affiliation(s)
- Angeline S Andrew
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Transitional cell carcinoma of the urinary bladder has a diverse collection of biologic and functional characteristics. This is reflected in differing clinical courses. The diagnosis of bladder cancer is based on the information provided by cystoscopy, the gold standard in combination with urinary cytology findings. Many tumor markers have been evaluated for detecting and monitoring the disease in serum, bladder washes, and urinary specimens. However, none of these biomarkers reported to date has shown sufficient sensitivity and specificity for the detection of the whole spectrum of bladder cancer diseases in routine clinical practice. The limited value of established prognostic markers requires the analysis of new molecular parameters of interest in predicting the prognosis of bladder cancer patients; in particular, the high-risk patient groups at risk of progression and recurrence. Over the past decade, there has been major progress elucidating of the molecular genetic and epigenetic changes leading to the development of transitional cell carcinoma. This review focuses on the recent advances of genetic and epigenetic aspects in bladder cancer, and emphasizes how molecular biology would be likely to affect the future therapies.
Collapse
Affiliation(s)
- Wun-Jae Kim
- Department of Urology, Chungbuk National University, College of Medicine and Institute for Tumor Research, Cheongju, Chungbuk, 361-763 South Korea.
| | | |
Collapse
|
8
|
Busold CH, Winter S, Hauser N, Bauer A, Dippon J, Hoheisel JD, Fellenberg K. Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data. Bioinformatics 2005; 21:2424-9. [PMID: 15746280 DOI: 10.1093/bioinformatics/bti367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The functional interpretation of microarray datasets still represents a time-consuming and challenging task. Up to now functional categories that are relevant for one or more experimental context(s) have been commonly extracted from a set of regulated genes and presented in long lists. RESULTS To facilitate interpretation, we integrated Gene Ontology (GO) annotations into Correspondence Analysis to display genes, experimental conditions and gene-annotations in a single plot. The position of the annotations in these plots can be directly used for the functional interpretation of clusters of genes or experimental conditions without the need for comparing long lists of annotations. Correspondence Analysis is not limited in the number of experimental conditions that can be compared simultaneously, allowing an easy identification of characterizing annotations even in complex experimental settings. Due to the rapidly increasing amount of annotation data available, we apply an annotation filter. Hereby the number of displayed annotations can be significantly reduced to a set of descriptive ones, further enhancing the interpretability of the plot. We validated the method on transcription data from Saccharomyces cerevisiae and human pancreatic adenocarcinomas. AVAILABILITY The M-CHiPS software is accessible for collaborators at http://www.mchips.org
Collapse
Affiliation(s)
- Christian H Busold
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Korabiowska M, Quentin T, Schlott T, Bauer H, Kunze E. Down-regulation of Ku 70 and Ku 80 mRNA expression in transitional cell carcinomas of the urinary bladder related to tumor progression. World J Urol 2004; 22:431-40. [PMID: 15551138 DOI: 10.1007/s00345-004-0453-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 08/08/2004] [Indexed: 11/29/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) containing the regulatory subunits Ku 70 and Ku 80 plays a prominent role in the repair of double-stranded DNA breaks by a nonhomologous end-joining pathway maintaining genomic stability. In an attempt to elucidate the significance of the DNA-PK complex for human urothelial carcinogenesis, the expression of Ku 70 and Ku 80 was studied in 71 transitional cell carcinomas (TCC) of the urinary bladder of various grades and stages, and in relation to lifestyle and occupational bladder cancer risk factors. To analyse the mRNA expression of Ku 70 and Ku 80, real-time quantitative reverse transcription-polymerase chain reaction was used and the protein expression assessed by immunohistochemistry. Advanced high-grade, high-stage TCC expressed the mRNA of Ku 70 and Ku 80 at a lower level than superficial low-grade, low-stage carcinomas, suggesting down-regulation of the Ku system to be associated with progression of bladder cancer from a low to a high malignant potential. The protein expression of Ku 70 and Ku 80 was closely related and decreased consistently with increasing grades and stages, paralleling the expression of the mRNA. Among hazardous environmental bladder cancer risk factors, heavy consumption of coffee was associated with a twofold decreased Ku 70 and Ku 80 mRNA expression, whereas tobacco smoke did not substantially affect the activity of the Ku system, except for a trend towards a dose-response relationship in the expression of Ku 70 mRNA. There is some evidence that exposure to polycyclic hydrocarbons, paints and lacquer, and stone dust may modify the expression of Ku 70 mRNA. Although the underlying molecular genetic pathways are not yet clearly understood, our data indicate that down-regulation of the Ku system promotes progression of urothelial carcinogenesis to a more malignant and aggressive clinical behavior, presumably as a result of an impaired capacity for DNA repair.
Collapse
Affiliation(s)
- Monika Korabiowska
- Department of Cytopathology, Center of Pathology, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
10
|
Construction of heteroduplex DNA andin vitro model for functional analysis of mismatch repair. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02901740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
12
|
Yoshida M, Xia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 2003; 278:36953-8. [PMID: 12855682 DOI: 10.1074/jbc.m305214200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) generated by inducible NO synthase (iNOS) plays crucial roles in inflammation and host defense. With an intrinsically bound calmodulin, iNOS is fully active once expressed in cells. Thus, regulation of NO production from iNOS was thought to primarily occur at the enzyme transcriptional level. Here we show that NO synthesis from iNOS can be profoundly modulated by heat shock protein 90 (hsp90) through protein-protein interaction. To study whether hsp90 affects iNOS function, recombinant murine iNOS was purified from an Escherichia coli expression system by affinity chromatography. Hsp90, at physiological concentrations (10-500 nm), dose-dependently increased iNOS activity. This was a specific effect because neither denatured hsp90 nor irrelevant bovine serum albumin affected iNOS function. Overexpression of hsp90 enhanced NO production in iNOS-transfected cells. On the contrary, hsp90 inhibition dramatically decreased NO formation from iNOS in macrophages. Co-immunoprecipitation studies showed that hsp90 and iNOS associated with each other in cells. Overexpression of iNOS resulted in NO-mediated cellular injury. Hsp90 inhibition markedly attenuated NO formation and prevented cellular injury. These results demonstrated that hsp90 is an allosteric enhancer of iNOS. iNOS is coupled with hsp90 in cells, and this coupling facilitates NO synthesis. In light of the critical role of hsp90 in iNOS-mediated cytotoxic action, modulating the interaction between hsp90 and iNOS may be a new approach to intervene inflammation and immune response.
Collapse
Affiliation(s)
- Masako Yoshida
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
13
|
Abstract
Transitional cell carcinoma (TCC) is the fifth most common solid malignancy in the USA. Radical cystectomy will cure a substantial fraction of patients with minimally invasive TCC, but approximately 50% of patients with muscle-invasive or extravesical disease treated by radical cystectomy alone die of metastatic TCC. Transitional cell carcinoma have a diverse collection of biologic and functional characteristics. This is reflected in a differing clinical course. The limited value of established prognosticators, make the analysis of new molecular parameters of interest in predicting the prognosis of bladder cancer patients; in particular, high-risk patient groups that are at risk of progression and recurrence. Over the past decade, there had been major progress in the elucidation of the molecular genetic changes leading to the development of TCC. This review will highlight these important advances and emphasize the ways in which molecular biology is likely to affect the development of future therapies.
Collapse
Affiliation(s)
- Sana Al-Sukhun
- Department of Internal Medicine, Division of Hematology/Oncology, Wayne State University School of Medicine and the Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | | |
Collapse
|
14
|
Hansen LT, Thykjaer T, Ørntoft TF, Rasmussen LJ, Keller P, Spang-Thomsen M, Edmonston TB, Schmutte C, Fishel R, Petersen LN. The role of mismatch repair in small-cell lung cancer cells. Eur J Cancer 2003; 39:1456-67. [PMID: 12826050 DOI: 10.1016/s0959-8049(03)00306-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous pattern of MMR gene expression. A significant correlation between the mRNA and protein levels was found. We demonstrate that low hMLH1 gene expression was not linked to promoter CpG methylation. One cell line (86MI) was found to be deficient in MMR and exhibited resistance to the alkylating agent MNNG. Surprisingly, MSI was not detected in 86MI and it appears to express all the major MMR components hMSH2, hMSH6, hMLH1, hPMS2, hMSH3, hMLH3, MBD4 (MED1) and hExo1. These data are consistent with at least two possibilities: (1) A missense mutation in one of the MMR genes, which dissociates MSI from drug resistance, or (2) inactivation of a second pathway that leads to MMR-deficiency and MNNG resistance, but induces negligible levels of MSI. We conclude that MMR deficiency is largely not associated with the pathogenesis of SCLC.
Collapse
Affiliation(s)
- L T Hansen
- Institute of Molecular Pathology, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Andrew AS, Karagas MR, Hamilton JW. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int J Cancer 2003; 104:263-8. [PMID: 12569548 DOI: 10.1002/ijc.10968] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic.
Collapse
Affiliation(s)
- Angeline S Andrew
- Department of Community and Family Medicine and Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
16
|
Abstract
The DNA mismatch repair (MMR) system is necessary for the maintenance of genomic stability. In a broad sense, all main functions of the MMR system, including the correction of biosynthetic errors, DNA damage surveillance, and prevention of recombination between nonidentical sequences serve this important purpose. Failure to accomplish these functions may lead to cancer. It is therefore not surprising that inherited defects in the MMR system underlie one of the most prevalent cancer syndromes in humans, hereditary nonpolyposis colon cancer (HNPCC). In addition, acquired defects of the same system may account for 15% to 25%, or even a higher percentage, of sporadic cancers of different organs of the "HNPCC spectrum," including the colon and rectum, uterine endometrium, stomach, and ovaries. Recent studies indicate that the MMR genes may be involved in the pathogenesis of even a broader spectrum of tumors in one way or another. An updated review of the different features of the human MMR system will be provided, with the emphasis on their implications in cancer development.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical Genetics, University of Helsinki, Finland.
| |
Collapse
|
17
|
Gu L, Wu J, Zhu BB, Li GM. Deficiency of a novel mismatch repair activity in a bladder tumor cell line. Nucleic Acids Res 2002; 30:2758-63. [PMID: 12087158 PMCID: PMC117065 DOI: 10.1093/nar/gkf410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We demonstrate here that a cell line derived from a bladder cancer is defective in strand-specific mismatch repair. The mismatch repair deficiency in this cell line is associated with microsatellite instability and blocks an early step in the repair pathway. Since the addition of a known mismatch repair component hMutSalpha, hMutSbeta, hMutLalpha, replication protein A or proliferating cellular nuclear antigen could not restore mismatch repair to the mutant extract, the bladder tumor cell line is likely to be defective in an uncharacterized repair component. However, the repair in the mutant extract could be complemented by a partially purified activity derived from HeLa nuclear extracts. Therefore, in addition to revealing that a loss of mismatch repair function is associated with bladder cancer, this study provides information implicating a new mismatch repair activity.
Collapse
Affiliation(s)
- Liya Gu
- Department of Pathology and Laboratory Medicine, Suite MS 117, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|