1
|
Humbert A, Lefebvre R, Nawrot M, Caussy C, Rieusset J. Calcium signalling in hepatic metabolism: Health and diseases. Cell Calcium 2023; 114:102780. [PMID: 37506596 DOI: 10.1016/j.ceca.2023.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The flexibility between the wide array of hepatic functions relies on calcium (Ca2+) signalling. Indeed, Ca2+ is implicated in the control of many intracellular functions as well as intercellular communication. Thus, hepatocytes adapt their Ca2+ signalling depending on their nutritional and hormonal environment, leading to opposite cellular functions, such as glucose storage or synthesis. Interestingly, hepatic metabolic diseases, such as obesity, type 2 diabetes and non-alcoholic fatty liver diseases, are associated with impaired Ca2+ signalling. Here, we present the hepatocytes' toolkit for Ca2+ signalling, complete with regulation systems and signalling pathways activated by nutrients and hormones. We further discuss the current knowledge on the molecular mechanisms leading to alterations of Ca2+ signalling in hepatic metabolic diseases, and review the literature on the clinical impact of Ca2+-targeting therapeutics.
Collapse
Affiliation(s)
- Alexandre Humbert
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Rémy Lefebvre
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cyrielle Caussy
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France.
| |
Collapse
|
2
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
3
|
|
4
|
Roden M. Hepatic glucose production and insulin resistance. Wien Med Wochenschr 2009; 158:558-61. [PMID: 18998072 DOI: 10.1007/s10354-008-0595-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 03/26/2008] [Indexed: 01/03/2023]
Abstract
Insulin resistance relates to hepatic glucose production (HGP) and hepatic triglyceride content (HTG). Elevation of free fatty acids (FFA) and imbalance of adipocytokines are major mechanisms involved in insulin resistance. Using isolated perfused rat livers we examined metabolic effects of hormones, FFA and leptin. Not only insulin, but also insulin-like growth factor-I similarly decreased epinephrine-induced HGP. Likewise, leptin not only reduced epinephrine-induced HGP, but also decreased fasting HGP by inhibiting gluconeogenesis from lactate. This resulted from the stimulation of the insulin receptor substrate (IRS)-2 pathway and the synthesis of phosphoenolpyruvate carboxykinase, whereas the IRS-1 pathway is inhibited. In dietary-induced obesity, leptin receptors and signalling were downregulated and its cross-talk with insulin signalling was differentially regulated depending on nutritional status. Leptin further increased HTG and intrahepatic FFA. A short-term increase in circulating FFA (palmitate and oleate) augmented lactate uptake, but not HGP. This early effect was paralleled by protein phosphorylation at different sites resulting in impaired insulin signalling.
Collapse
Affiliation(s)
- Michael Roden
- Medical Department I, Hanusch Hospital (Teaching Hospital of the Medical University of Vienna), Vienna, Austria.
| |
Collapse
|
5
|
Reactive oxygen species facilitate the insulin-dependent inhibition of glucagon-induced glucose production in the isolated perfused rat liver. Wien Med Wochenschr 2008; 158:570-4. [DOI: 10.1007/s10354-008-0598-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 10/21/2022]
|
6
|
Jobsis PD, Rothstein EC, Balaban RS. Limited utility of acetoxymethyl (AM)-based intracellular delivery systems, in vivo: interference by extracellular esterases. J Microsc 2007; 226:74-81. [PMID: 17381712 PMCID: PMC2324114 DOI: 10.1111/j.1365-2818.2007.01755.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of acetoxymethyl (AM) groups to deliver and trap exogenous optical probes inside cells is an established tool in cell biology/physiology, however, these probes have not been used extensively in vivo. In this study, the use of the acetoxymethyl delivery system for optical probes was evaluated, in vivo. Initial studies revealed very little trapped probe in intact tissues even when near saturating levels of probe were injected in living animals. We tested the hypothesis that extracellular esterases rapidly cleave the acetoxymethyl groups preventing the probes from entering cells, in vivo. The rates of hydrolysis of 11 acetoxymethyl probes in diluted porcine plasma revealed an essentially first order high rate dye cleavage with half times on the order of minutes or less. Studies on mice and rabbits revealed rates 10- to 2-fold higher, respectively. These plasma studies suggested that the acetoxymethyl probes were being cleaved before having a chance to enter cells in tissues in vivo. This was confirmed using intravital 2-photon excitation microscopy in muscle tissue where several acetoxymethyl probes were found to rapidly cleave in the vascular space during infusion and not be trapped in the muscle cells. Studies with succinimidyl esters that should quickly bind to proteins on cleavage also failed to enter cells, in vivo, consistent with the notion that the cleavage was occurring in the extracellular space. These data suggest that the high level of plasma and extracellular esterase activity render the classical acetoxymethyl probes ineffective for monitoring intracellular events, in vivo. Different approaches to trapping exogenous probes will need to be explored for physiological studies using intravital microscopy.
Collapse
Affiliation(s)
- Paul D Jobsis
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
7
|
Nieuwenhuijs VB, De Bruijn MT, Padbury RTA, Barritt GJ. Hepatic ischemia-reperfusion injury: roles of Ca2+ and other intracellular mediators of impaired bile flow and hepatocyte damage. Dig Dis Sci 2006; 51:1087-102. [PMID: 16865576 DOI: 10.1007/s10620-006-8014-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/27/2005] [Indexed: 12/16/2022]
Abstract
Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.
Collapse
Affiliation(s)
- Vincent B Nieuwenhuijs
- HPB and Liver Transplant Unit, Flinders Medical Centre and School of Medicine, Flinders University, Bedford Park, South Australia, 5042, Australia
| | | | | | | |
Collapse
|
8
|
Gregory RB, Hughes R, Barritt GJ. Induction of cholestasis in the perfused rat liver by 2-aminoethyl diphenylborate, an inhibitor of the hepatocyte plasma membrane Ca2+ channels. J Gastroenterol Hepatol 2004; 19:1128-34. [PMID: 15377289 DOI: 10.1111/j.1440-1746.2004.03417.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS An increase in the cytoplasmic free Ca2+ concentration in hepatocytes as a result of the release of Ca2+ from intracellular stores and Ca2+ inflow from the extracellular space is a necessary part of the mechanism by which bile acids are moved along the bile cannaliculus by contraction of the cannaliculus. 2-Aminoethyl diphenylborate (2-APB) is a recently discovered inhibitor of store-operated plasma membrane Ca2+ channels in hepatocytes. The aim of the present study was to test the ability of 2-APB to inhibit bile flow. METHODS Bile flow was measured in the isolated perfused rat liver using cannulation of the common bile duct. Measurements were carried out in the presence or absence of 2-APB in either the presence of taurocholic acid (to enhance basal bile flow) or in the absence of taurocholic acid and in the presence of the hormones vasopressin and glucagon, which are known to stimulate bile flow. RESULTS In livers perfused in the presence of taurocholic acid, 2-APB reversibly inhibited bile flow with a slow time of onset. The time of onset of inhibition was reduced by prior addition of the endoplasmic reticulum (Ca(2+) + Mg2+)adenosine triphosphatase inhibitor, 2,5-di-t-butylhydroquinone. In livers perfused in the absence of taurocholate, 2-APB had little effect on the basal rate of bile flow, but inhibited the ability of vasopressin and glucagon to stimulate bile flow. CONCLUSIONS It is concluded that an inhibitor of hepatocyte plasma membrane Ca2+ channels can induce cholestasis. The results provide evidence that suggests that, over a period of time, the normal function of hepatocyte store-operated Ca2+ channels is required to maintain bile flow. Future strategies directed at the regulation of bile flow might include pharmacological or other interventions that modulate Ca2+ inflow to hepatocytes.
Collapse
Affiliation(s)
- Roland B Gregory
- Department of Medical Biochemistry, School of Medicine, Faculty of Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
9
|
Jan CR, Kuo SY, Cheng JS, Lo YK, Liu CP, Chen WC. Effect of NPC-14686 (Fmoc-L-homophenylalanine) on intracellular Ca2+ levels in human hepatoma cells. Life Sci 2003; 72:2571-80. [PMID: 12672503 DOI: 10.1016/s0024-3205(03)00175-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of NPC-14686, a potential anti-inflammatory drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in HA22/VGH human hepatoma cells was explored by using fura-2 as a fluorescent Ca(2+) indicator. NPC-14686 at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. The Ca(2+) signal was reduced by removing extracellular Ca(2+) or by 10 microM nifedipine and was not changed by verapamil or diltiazem. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) abolished 200 microM NPC-14686-induced Ca(2+) release; and conversely pretreatment with NPC-14686 abolished thapsigargin-induced Ca(2+) release. The Ca(2+) release induced by 200 microM NPC-14686 was not changed by inhibiting phospholipase C with 2 microM U73122. Together, the results suggest that in human hepatoma cells, NPC-14686 induced a [Ca(2+)](i) increase by causing store Ca(2+) release from the endoplasmic reticulum in an phospholipase C-independent manner, and by inducing nifedipine-sensitive Ca(2+) influx.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Road, Kaohsiung 813, Taiwan.
| | | | | | | | | | | |
Collapse
|