1
|
Abstract
Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Assis LC, de Castro AA, de Jesus JPA, Nepovimova E, Kuca K, Ramalho TC, La Porta FA. Computational evidence for nitro derivatives of quinoline and quinoline N-oxide as low-cost alternative for the treatment of SARS-CoV-2 infection. Sci Rep 2021; 11:6397. [PMID: 33737545 PMCID: PMC7973710 DOI: 10.1038/s41598-021-85280-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
A new and more aggressive strain of coronavirus, known as SARS-CoV-2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the significant time–space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fight this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N-oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well-reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N-oxide, which are biologically active compounds and may be low-cost alternatives for the treatment of infections induced by SARS-CoV-2.
Collapse
Affiliation(s)
- Letícia C Assis
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - Alexandre A de Castro
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil
| | - João P A de Jesus
- Laboratório de Nanotecnologia E Química Computacional, Universidade Tecnológica Federal Do Paraná, Londrina, PR, 86036-370, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, CEP 37200-000, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Felipe A La Porta
- Laboratório de Nanotecnologia E Química Computacional, Universidade Tecnológica Federal Do Paraná, Londrina, PR, 86036-370, Brazil.
| |
Collapse
|