1
|
Mavridou M, Pearce SH. Exploring antigenic variation in autoimmune endocrinopathy. Front Immunol 2025; 16:1561455. [PMID: 40093006 PMCID: PMC11906412 DOI: 10.3389/fimmu.2025.1561455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune disorders develop owing to a misdirected immune response against self-antigen. Genetic studies have revealed that numerous variants in genes encoding immune system proteins are associated with the development of autoimmunity. Indeed, many of these genetic variants in key immune receptors or transcription factors are common in the pathogenesis of several different autoimmune conditions. In contrast, the proclivity to develop autoimmunity to any specific target organ or tissue is under-researched. This has particular relevance to autoimmune endocrine conditions, where organ-specific involvement is the rule. Genetic polymorphisms in the genes encoding the targets of autoimmune responses have been shown to be associated with predisposition to several autoimmune diseases, including type 1 diabetes, autoimmune thyroid disease and Addison's disease. Mechanistically, variations leading to decreased intrathymic expression, overexpression, different localisation, alternative splicing or post-translational modifications can interfere in the tolerance induction process. This review will summarise the different ways genetic variations in certain genes encoding endocrine-specific antigens (INS, TSHR, TPO, CYP21A2, PIT-1) may predispose to different autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Maria Mavridou
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Newcastle-upon-Tyne, United Kingdom
- Endocrine Unit, Royal Victoria Infirmary, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
2
|
Zufry H, Hariyanto TI. TSHR Gene (rs179247) Polymorphism and Susceptibility to Autoimmune Thyroid Disease: A Systematic Review and Meta-Analysis. Endocrinol Metab (Seoul) 2024; 39:603-614. [PMID: 39086275 PMCID: PMC11375308 DOI: 10.3803/enm.2024.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGRUOUND Both Graves' disease (GD) and Hashimoto's thyroiditis (HT) are classified as autoimmune thyroid diseases (AITDs). It has been hypothesized that changes in the thyroid-stimulating hormone receptor (TSHR) gene may contribute to the development of these conditions. This study aimed to analyze the correlation between the TSHR rs179247 gene polymorphism and susceptibility to AITD. METHODS We conducted a thorough search of the Google Scholar, Scopus, Medline, and Cochrane Library databases up until March 2, 2024, utilizing a combination of relevant keywords. This review examines data on the association between TSHR rs179247 and susceptibility to AITD. Random-effect models were employed to assess the odds ratio (OR), and the findings are presented along with their respective 95% confidence intervals (CIs). RESULTS The meta-analysis included 12 studies. All genetic models of the TSHR rs179247 gene polymorphism were associated with an increased risk of developing GD. Specifically, the associations were observed in the dominant model (OR, 1.65; P<0.00001), recessive model (OR, 1.65; P<0.00001), as well as for the AA genotype (OR, 2.09; P<0.00001), AG genotype (OR, 1.39; P<0.00001), and A allele (OR, 1.44; P<0.00001). Further regression analysis revealed that these associations were consistent regardless of the country of origin, sample size, age, and sex distribution. However, no association was found between TSHR rs179247 and the risk of HT across all genetic models. CONCLUSION This study suggests that the TSHR rs179247 gene polymorphism is associated with an increased risk of GD, but not with HT, and may therefore serve as a potential biomarker.
Collapse
Affiliation(s)
- Hendra Zufry
- Divisions of Endocrinology, Metabolism, and Diabetes, Thyroid Center, Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala (University Syiah Kuala), Banda Aceh, Indonesia
- Divisions of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia
- Innovation and Research Center of Endocrinology, Faculty of Medicine, Universitas Syiah Kuala (University Syiah Kuala), Banda Aceh, Indonesia
| | - Timotius Ivan Hariyanto
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Tangerang, Indonesia
| |
Collapse
|
3
|
Abstract
Graves' disease (GD) is the commonest cause of hyperthyroidism and has a strong female preponderance. Everyday clinical practice suggests strong aggregation within families and twin studies demonstrate that genetic factors account for 60-80% of risk of developing GD. In this review, we collate numerous genetic studies and outline the discoveries over the years, starting with historic candidate gene studies and then exploring more recent genome-wide linkage and association studies, which have involved substantial cohorts of East Asian patients as well as those of European descent. Variants in genes including HLA, CTLA4, and PTPN22 have been shown to have substantial individual effects on disease susceptibility. In addition, we examine emerging evidence concerning the possibility that genetic variants may correlate with relevant clinical phenotypes including age of onset of GD, severity of thyrotoxicosis, goitre size and relapse of hyperthyroidism following antithyroid drug therapy, as well as thyroid eye disease. This review supports the inheritance of GD as a complex genetic trait, with a growing number of more than 80 susceptibility loci identified so far. Future implementation of more targeted clinical therapies requires larger studies investigating the influence of these genetic variants on the various phenotypes and different outcomes of conventional treatments.
Collapse
Affiliation(s)
- Lydia Grixti
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
- Endocrine Unit, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK
| | - Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK
- Department of Paediatric Endocrinology, The Great North Children's Hospital, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK
| | - Simon H Pearce
- Translational and Clinical Research Institute, Newcastle University, BioMedicine West, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK.
- Endocrine Unit, Royal Victoria Infirmary, Queen Victoria Road, Newcastle-upon-Tyne, NE1 4LP, UK.
| |
Collapse
|
4
|
Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023; 12:918. [PMID: 36980259 PMCID: PMC10047067 DOI: 10.3390/cells12060918] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The most common cause of acquired thyroid dysfunction is autoimmune thyroid disease, which is an organ-specific autoimmune disease with two presentation phenotypes: hyperthyroidism (Graves-Basedow disease) and hypothyroidism (Hashimoto's thyroiditis). Hashimoto's thyroiditis is distinguished by the presence of autoantibodies against thyroid peroxidase and thyroglobulin. Meanwhile, autoantibodies against the TSH receptor have been found in Graves-Basedow disease. Numerous susceptibility genes, as well as epigenetic and environmental factors, contribute to the pathogenesis of both diseases. This review summarizes the most common genetic, epigenetic, and environmental mechanisms involved in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Carrera 6 Nº 13N-50, Popayán 190001, Colombia
| |
Collapse
|
5
|
Gallo D, Piantanida E, Gallazzi M, Bartalena L, Tanda ML, Bruno A, Mortara L. Immunological Drivers in Graves' Disease: NK Cells as a Master Switcher. Front Endocrinol (Lausanne) 2020; 11:406. [PMID: 32765422 PMCID: PMC7379480 DOI: 10.3389/fendo.2020.00406] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Graves' disease (GD) is a common autoimmune cause of hyperthyroidism, which is eventually related to the generation of IgG antibodies stimulating the thyrotropin receptor. Clinical manifestations of the disease reflect hyperstimulation of the gland, causing thyrocyte hyperplasia (goiter) and excessive thyroid hormone synthesis (hyperthyroidism). The above clinical manifestations are preceded by still partially unraveled pathogenic actions governed by the induction of aberrant phenotype/functions of immune cells. In this review article we investigated the potential contribution of natural killer (NK) cells, based on literature analysis, to discuss the bidirectional interplay with thyroid hormones (TH) in GD progression. We analyzed cellular and molecular NK-cell associated mechanisms potentially impacting on GD, in a view of identification of the main NK-cell subset with highest immunoregulatory role.
Collapse
Affiliation(s)
- Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Luigi Bartalena
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Marín-Sánchez A, Álvarez-Sierra D, González O, Lucas-Martin A, Sellés-Sánchez A, Rudilla F, Enrich E, Colobran R, Pujol-Borrell R. Regulation of TSHR Expression in the Thyroid and Thymus May Contribute to TSHR Tolerance Failure in Graves' Disease Patients via Two Distinct Mechanisms. Front Immunol 2019; 10:1695. [PMID: 31379878 PMCID: PMC6657650 DOI: 10.3389/fimmu.2019.01695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Graves' disease (GD) involves the presence of agonistic auto-antibodies against the thyrotropin receptor (TSHR), which are responsible for the clinical symptoms. While failure of TSHR tolerance is central to GD pathogenesis, the process leading to this failure remains poorly understood. Two mechanisms intimately linked to tolerance have been proposed to explain the association of SNPs located in TSHR intron 1 to GD: (1) differential alternative splicing in the thyroid; and (2) modulation of expression in the thymus. To elucidate the relative contribution to these two mechanisms to GD pathogenesis, we analyzed the level of full-length and ST4 and ST5 isoform expression in the thyroid (n = 49) and thymus (n = 39) glands, and the influence of intron 1-associated SNPs on such expression. The results show that: (1) the level of flTSHR and ST4 expression in the thymus was unexpectedly high (20% that of the thyroid); (2) while flTSHR is the predominant isoform, the levels are similar to ST4 (ratio flTSHR/ST4 = 1.34 in the thyroid and ratio flTSHR/ST4 in the thymus = 1.93); (3) next-generation sequencing confirmed the effect of the TSHR intron 1 polymorphism on TSHR expression in the thymus with a bias of 1.5 ± 0.2 overexpression of the protective allele in the thymus compared to the thyroid; (4) GD-associated intron 1 SNPs did not influence TSHR alternative splicing of ST4 and ST5 in the thyroid and thymus; and (5) three-color confocal imaging showed that TSHR is associated with both thymocytes, macrophages, and dendritic cells in the thymus. Our findings confirm the effect of intron 1 polymorphisms on thymic TSHR expression and we present evidence against an effect on the relative expression of isoforms. The high level of ST4 expression in the thymus and its distribution within the tissue suggest that this would most likely be the isoform that induces central tolerance to TSHR thus omitting most of the hinge and transmembrane portion. The lack of central tolerance to a large portion of TSHR may explain the relatively high frequency of autoimmunity related to TSHR and its clinical consequence, GD.
Collapse
Affiliation(s)
- Ana Marín-Sánchez
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Álvarez-Sierra
- Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar González
- Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana Lucas-Martin
- Endocrinology Division, Hospital Universitari Germans Trias Pujol, Badalona, Spain
| | | | - Francesc Rudilla
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Transfusional Medicine Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Emma Enrich
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Transfusional Medicine Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricardo Pujol-Borrell
- Immunology Division, FOCIS Center of Excellence, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Analysis of the PD-1/PD-L1 axis in human autoimmune thyroid disease: Insights into pathogenesis and clues to immunotherapy associated thyroid autoimmunity. J Autoimmun 2019; 103:102285. [PMID: 31182340 DOI: 10.1016/j.jaut.2019.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
Autoimmune thyroid diseases (AITDs), i.e., Graves' disease (GD) and Hashimoto thyroiditis (HT), are the most prevalent organ-specific autoimmune diseases, but their pathogenesis is still incompletely understood. The PD-1/PD-L1 pathway is an important mechanism of peripheral tolerance that has not been investigated in AITDs. Here, we report the analysis of the expression of PD-1, PD-L1 and PD-L2 in PBMCs, infiltrating thyroid lymphocytes (ITLs) and in thyroid follicular cells (TFCs) in GD, HT and multinodular goiter (MNG) patients and healthy controls PBMCs (HC). By combining flow cytometry, tissue immunofluorescence and induction experiments on primary and thyroid cell line cultures, we show that: 1) while PD-1+ T cells are moderately expanded in PBMCs from GD vs HC, approximately half of T cells in the infiltrate are PD-1+ including some PD-1hi; 2) PD-L1, but not PD-L2, is expressed by 81% of GD glands and in 25% of non-autoimmune glands; 3) PD-L1, was expressed by TFCs in areas that also contain abundant PD-1 positive T cells but; 4) co-localization in TFCs indicated only partial overlap between the smaller areas of the PD-L1+ and the larger areas of HLA class II+ expression; 5) IFNγ is capable of inducing PD-L1 in >90% of TFCs in primary cultures and cell lines. Collectively these results indicate that the PD-1/PD-L1 axis is operative in AITD glands and may restrain the autoimmune response. Yet the discrepancy between easy induction in vitro and the limited expression in vivo (compared to HLA) suggests that PD-L1 expression in vivo is partially inhibited in GD and HT glands. In conclusions 1) the PD-1/PD-L1 pathway is activated in AITD glands but probably not to the extent to inhibit disease progression and 2) Thyroid autoimmunity arising after PD-1/PD-L1 blocking therapies in cancer patients may result from interfering PD-1/PD-L1 tolerance mechanism in thyroid with minimal (focal) thyroiditis. Finally acting on the PD-1/PD-L1 pathway could be a new approach to treat AITD and other organ-specific autoimmunity in the future.
Collapse
|
8
|
Latif R, Mezei M, Morshed SA, Ma R, Ehrlich R, Davies TF. A Modifying Autoantigen in Graves' Disease. Endocrinology 2019; 160:1008-1020. [PMID: 30822352 PMCID: PMC6455603 DOI: 10.1210/en.2018-01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
The TSH receptor (TSHR) is the major autoantigen in Graves' disease (GD). Bioinformatic analyses predict the existence of several human TSHR isoforms from alternative splicing, which can lead to the coexpression of multiple receptor forms. The most abundant of these is TSHRv1.3. In silico modeling of TSHRv1.3 demonstrated the structural integrity of this truncated receptor isoform and its potential binding of TSH. Tissue profiling revealed wide expression of TSHRv1.3, with a predominant presence in thyroid, bone marrow, thymus, and adipose tissue. To gain insight into the role of this v1.3 receptor isoform in thyroid pathophysiology, we cloned the entire open reading frame into a mammalian expression vector. Immunoprecipitation studies demonstrated that both TSHR-stimulating antibody and human TSH could bind v1.3. Furthermore, TSHRv1.3 inhibited the stimulatory effect of TSH and TSHR-Ab MS-1 antibody on TSHR-induced cAMP generation in a dose-dependent manner. To confirm the antigenicity of v1.3, we used a peptide ELISA against two different epitopes. Of 13 GD samples, 11 (84.6%) were positive for a carboxy terminal peptide and 10 (76.9%) were positive with a junction region peptide. To demonstrate that intracellular v1.3 could serve as an autoantigen and modulate disease, we used double-transfected Chinese hamster ovary cells that expressed both green fluorescent protein (GFP)-tagged TSHRv1.3 and full-length TSHR. We then induced cell stress and apoptosis using a TSHR monoclonal antibody and observed the culture supernatant contained v1.3-GFP protein, demonstrating the release of the intracellular receptor variant by this mechanism.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters VA Medical Center, New York, New York
- Correspondence: Rauf Latif, PhD, Icahn School of Medicine at Mount Sinai, Atran Berg 4-43, 1428 Madison Avenue, New York, New York 10029. E-mail:
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Syed A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters VA Medical Center, New York, New York
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters VA Medical Center, New York, New York
| | - Rachel Ehrlich
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, New York
- James J. Peters VA Medical Center, New York, New York
| |
Collapse
|