1
|
Salem NAB, Ismail WM, Hendawy SR, Abdelrahman AM, El-Refaey AM. Serum angiopoietin-2: a promising biomarker for early diabetic kidney disease in children and adolescents with type 1 diabetes. Eur J Pediatr 2024; 183:3853-3862. [PMID: 38884820 PMCID: PMC11322226 DOI: 10.1007/s00431-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.
Collapse
Affiliation(s)
- Nanees Abdel-Badie Salem
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Wafaa M Ismail
- Mansoura University Children's Hospital, Mansoura, Egypt
| | - Shimaa R Hendawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf M Abdelrahman
- Department of Diagnostic Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Ahmed M El-Refaey
- Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Fedulovs A, Tzivian L, Zalizko P, Ivanova S, Bumane R, Janeviča J, Krūzmane L, Krustins E, Sokolovska J. Progression of Diabetic Kidney Disease and Gastrointestinal Symptoms in Patients with Type I Diabetes. Biomedicines 2023; 11:2679. [PMID: 37893052 PMCID: PMC10604159 DOI: 10.3390/biomedicines11102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Little research is conducted on the link between diabetic kidney disease (DKD) progression and diabetic gastroenteropathy in type 1 diabetes (T1D). (2) Methods. We performed a cross-sectional study with 100 T1D patients; 27 of them had progressive DKD, defined as an estimated glomerular filtration rate (eGFR) decline ≥3 mL/min/year or increased albuminuria stage, over a mean follow-up time of 5.89 ± 1.73 years. A newly developed score with 17 questions on gastrointestinal (GI) symptoms was used. Faecal calprotectin was measured by ELISA. Lower GI endoscopies were performed in 21 patients. (3) Results: The gastrointestinal symptom score demonstrated high reliability (Cronbach's α = 0.78). Patients with progressive DKD had higher GI symptom scores compared to those with stable DKD (p = 0.019). The former group demonstrated more frequent bowel movement disorders (p < 0.01). The scores correlated negatively with eGFR (r = -0.335; p = 0.001), positively with albuminuria (r = 0.245; p = 0.015), Hba1c (r = 0.305; p = 0.002), and diabetes duration (r = 0.251; p = 0.012). Faecal calprotectin levels did not differ between DKD groups significantly. The most commonly reported histopathological findings of enteric mucosa were infiltration with eosinophils, lymphocytes, plasmacytes, the presence of lymphoid follicles, and lymphoid aggregates. Conclusion: The progression of DKD is positively correlated with gastrointestinal symptoms; however, more research is needed to clarify the causal relationships of the gut-kidney axis in T1D.
Collapse
Affiliation(s)
- Aleksejs Fedulovs
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| | - Lilian Tzivian
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| | - Polina Zalizko
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV 1002 Riga, Latvia;
| | - Santa Ivanova
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| | - Renāte Bumane
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| | - Jana Janeviča
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV 1002 Riga, Latvia;
| | - Lelde Krūzmane
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| | - Eduards Krustins
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV 1002 Riga, Latvia;
| | - Jelizaveta Sokolovska
- Faculty of Medicine, University of Latvia, Jelgavas Street 3, LV 1004 Riga, Latvia; (A.F.); (L.T.); (P.Z.); (S.I.); (R.B.); (J.J.); (L.K.)
| |
Collapse
|
3
|
Li M, Popovic Z, Chu C, Reichetzeder C, Pommer W, Krämer BK, Hocher B. Impact of Angiopoietin-2 on Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:0. [PMID: 38306230 PMCID: PMC10826602 DOI: 10.1159/000529774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/14/2023] [Indexed: 02/04/2024]
Abstract
Background Angiopoietins (Ang) are essential angiogenic factors involved in angiogenesis, vascular maturation, and inflammation. The most studied angiopoietins, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), behave antagonistically to each other in vivo to sustain vascular endothelium homeostasis. While Ang-1 typically acts as the endothelium-protective mediator, its context-dependent antagonist Ang-2 can promote endothelium permeability and vascular destabilization, hence contributing to a poor outcome in vascular diseases via endothelial injury, vascular dysfunction, and microinflammation. The pathogenesis of kidney diseases is associated with endothelial dysfunction and chronic inflammation in renal diseases. Summary Several preclinical studies report overexpression of Ang-2 in renal tissues of certain kidney disease models; additionally, clinical studies show increased levels of circulating Ang-2 in the course of chronic kidney disease, implying that Ang-2 may serve as a useful biomarker in these patients. However, the exact mechanisms of Ang-2 action in renal diseases remain unclear. Key Messages We summarized the recent findings on Ang-2 in kidney diseases, including preclinical studies and clinical studies, aiming to provide a systematic understanding of the role of Ang-2 in these diseases.
Collapse
Affiliation(s)
- Mei Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zoran Popovic
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Nephrology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfgang Pommer
- Charité University Hospital Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- European Center for Angioscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
- Center for Innate Immunoscience, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Medical Diagnostics, IMD Berlin, Berlin, Germany
| |
Collapse
|
4
|
Liu J, Yao J, Zhao Y, Su J, Ye J, Wang Y. Angiopoietin2-mediated caveolin1 phosphorylation regulating transcytosis of renal tubular epithelial cell contributes to the occurrence of albuminuria under high glucose exposure. J Transl Med 2022; 20:185. [PMID: 35468852 PMCID: PMC9036792 DOI: 10.1186/s12967-022-03388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Microlbuminuria is the earliest clinical evidence of diabetic kidney disease (DKD) and contributes to the induction and/or progression of DKD. Previous studies have shown that increased expression of angiopoietin2 (ANGPT2) is correlated with an increase in albuminuria. However, the critical role of ANGPT2 in albuminuria development remains unclear. Some studies have shown the significance of transcytosis in the occurrence of albuminuria, but it is unknown whether it takes place in albumin recycling in renal tubular cells of patients with DKD. Furthermore, the potential mechanism of this association also remains unclear. Methods In this study, human renal tubular epithelial cells (HK-2) were cultured with high glucose in a Transwell plate to establish a transcytosis model, while C57BL/6 mice were intraperitoneally injected with streptozotocin to establish a DKD model. The expression of ANGPT2 and caveolin1 (CAV1) phosphorylation was dectected through immunohistochemistry and western blot analysis. Results Transcytosis of albumin in renal tubular epithelial cells was downregulated after high glucose exposure, and increased expression of ANGPT2 and CAV1 phosphorylation both in vivo and in vitro was observed. Inhibition of ANGPT2 and CAV1 independently promoted transcytosis. Furthermore, ANGPT2 downregulation inhibited CAV1 phosphorylation, whereas CAV1 phosphorylation had no effect on the expression of ANGPT2. Conclusions ANGPT2 reduces albumin transcytosis across renal tubular epithelial cells under high glucose conditions by activating CAV1 phosphorylation, thus increasing albuminuria in DKD. These findings suggested that ANGPT2 and CAV1 may be promising therapeutic targets for albuminuria in DKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03388-6.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junxia Yao
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, 44300, China
| | - Jinxuan Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Jiang S, Luo M, Bai X, Nie P, Zhu Y, Cai H, Li B, Luo P. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J Cell Commun Signal 2022; 16:313-331. [PMID: 35041192 DOI: 10.1007/s12079-021-00664-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes and is the leading cause of end-stage renal disease (ESRD). Persistent proteinuria is an important feature of DKD, which is caused by the destruction of the glomerular filtration barrier (GFB). Glomerular endothelial cells (GECs) and podocytes are important components of the GFB, and their damage can be observed in the early stages of DKD. Recently, studies have found that crosstalk between cells directly affects DKD progression, which has prospective research significance. However, the pathways involved are complex and largely unexplored. Here, we review the literature on cellular crosstalk of GECs and podocytes in the context of DKD, and highlight specific gaps in the field to propose future research directions. Elucidating the intricates of such complex processes will help to further understand the pathogenesis of DKD and develop better prevention and treatment options.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Hangxi Cai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
6
|
Salna I, Salna E, Pahirko L, Skrebinska S, Krikova R, Folkmane I, Pīrāgs V, Sokolovska J. Achievement of treatment targets predicts progression of vascular complications in type 1 diabetes. J Diabetes Complications 2021; 35:108072. [PMID: 34635403 DOI: 10.1016/j.jdiacomp.2021.108072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM To study the association between achievement of guideline-defined treatment targets on HbA1c, low-density lipoproteins (LDL-C), and blood pressure with the progression of diabetic complications in patients with type 1 diabetes (T1D). METHODS The study included 355 patients at baseline and 114 patients with follow-up data after 3-5 years. Outcome variables were the progression of diabetic kidney disease, retinopathy, or cardiovascular disease (CVD). We used logistic regression and other machine learning algorithms (MLA) to model the association of achievement of treatment targets and probability of progression of complications. RESULTS Achievement of the target blood pressure was associated with 96% lower odds of a new CVD event (0.04 (95% CI 0.00, 0.53), p = 0.016), and 72% lower odds of progression of any complication (0.28 (95% CI 0.09, 0.89), p = 0.027. Achievement of HbA1c target was associated with lower odds of composite complication progression by 82% (0.18 (95% CI 0.04, 0.88), p = 0.034.) None of the patients who achieved HbA1c target progressed in CVD. MLA demonstrated good accuracy for the prediction of progression of CVD (AUC 0.824), and lower accuracy for other complications. CONCLUSION The achievement of blood pressure and HbA1c treatment targets is associated with lower odds of vascular complication of T1D in a real life study.
Collapse
Affiliation(s)
- Ilze Salna
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Endocrinology Department, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | - Edgars Salna
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Leonora Pahirko
- University of Latvia, Faculty of Physics, Mathematics and Optometry, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Sabīne Skrebinska
- Riga Stradiņš University, Faculty of Residency, Dzirciema iela 16, LV 1007 Riga, Latvia
| | - Regīna Krikova
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia
| | - Inese Folkmane
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Centre of Nephrology, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | - Valdis Pīrāgs
- University of Latvia, Faculty of Medicine, Jelgavas iela 3, LV 1004 Riga, Latvia; Pauls Stradiņš Clinical University Hospital, Endocrinology Department, Pilsoņu iela 13, LV 1002 Riga, Latvia
| | | |
Collapse
|
7
|
Abstract
Neuropeptide Y (NPY) is implicated in many pathological conditions including obesity, diabetes, and insulin resistance. However, a pathogenic role of NPY in kidney disease has not been described. We found that NPY is produced by the podocyte in the glomerulus, and this production decreases in renal disease, in contrast to an increase in circulating NPY levels. In the glomerulus, NPY signals via the NPY receptor 2 (NPY2R) and modulates PI3K, MAPK, and NFAT signaling, along with RNA processing and cell migration and, if prolonged, predicted nephrotoxicity. The pharmacological inhibition of NPY-NPY2R signaling also protected against albuminuria and kidney disease in a mouse model of glomerulosclerosis, suggesting that inhibiting this pathway may be therapeutically beneficial in the prevention of kidney disease. Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.
Collapse
|