1
|
Wang N, Chen W, Wang H, Yao Y, Li Y, Li H, Liu X, Liu Z, Abouzied A, Jin X, Wang S, Bai X, Shan J, Li A. MRI-based radiomics for differention of aquaporin 4-immunoglobulin G-positive neuromyelitis optic spectrum disorder and anti myelin oligodendrocyte glycoprotein immunoglobulin G-associated disorder. Mult Scler Relat Disord 2025; 95:106315. [PMID: 39999591 DOI: 10.1016/j.msard.2025.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES This study was designed to develop and validate a radiomic nomogram for the differential diagnosis of myelin oligodendrocyte glycoprotein antibody-related disease (MOGAD) and aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD). METHODS We retrospectively analysed data from a primary cohort consisting of 21 MOGAD and 63 AQP4+NMOSD patients and an external validation cohort comprising 10 MOGAD and 34 AQP4+NMOSD patients. Radiomic features were extracted from lesions of the cervical spinal cord and brainstem from sagittal T2-weighted MR images. We constructed a prediction model by integrating radiomic features with clinical data and evaluated its performance using calibration curves and decision curve analysis (DCA). RESULTS We developed a comprehensive nomogram that combines clinical and radiomic features to distinguish MOGAD from AQP4+NMOSD. The discriminative ability of the nomogram was quantified by the area under the receiver operating characteristic (ROC) curve (AUC), achieving values of 0.915 (95 % CI, 0.859-0.970) in the primary cohort and 0.837 (95 % CI, 0.715-0.959) in the validation cohort, indicating high diagnostic accuracy. The calibration analyses showed good concordance between the model predicted and actual outcomes. CONCLUSIONS This study successfully validated the radiomic feature model, demonstrating its superior performance in differentiating MOGAD from AQP4+NMOSD. The nomogram, integrating radiomic features with conventional imaging characteristics of brainstem and cervical cord lesions, significantly enhanced differentiation capability. Both models proved valuable in improving diagnostic accuracy, with radiomic features contributing most significantly.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Radiology, Zibo Prevention and Treatment hospital for Occupation diseases, Zibo, Shandong, China.
| | - Wei Chen
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Huijun Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yongjie Yao
- Department of Radiology, Richao City Hospital of TCM, Rizhao, China.
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, Hospital B, China.
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, Hospital B, China.
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, Hospital B, China.
| | - Zhuyun Liu
- Department of Imaging, Linyi Central Hospital, Linyi, China.
| | - Ahmed Abouzied
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Xiaodi Jin
- Department of Radiology, The Affiliated Weihai Second Municipal Hospital of Qingdao University,Weihai, China; Department of Radiology, Jinan Qilu Hospital of Shandong University, Jinan, China.
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital of Shandong University No.107, WenHuaxilu, Lixia District, Jinan, Shandong, 250012, China.
| | - Xue Bai
- Department of Radiology, Qilu Hospital of Shandong University No.107, WenHuaxilu, Lixia District, Jinan, Shandong, 250012, China.
| | - Jingli Shan
- Department of Neurology, Qilu Hospital of Shandong University No.107, WenHuaxilu, Lixia District, Jinan, Shandong, 250012, China.
| | - Anning Li
- Department of Radiology, Qilu Hospital of Shandong University No.107, WenHuaxilu, Lixia District, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Mewes D, Kuchling J, Schindler P, Khalil AAA, Jarius S, Paul F, Chien C. Diagnostik der Neuromyelitis-optica-Spektrum-Erkrankung (NMOSD) und der MOG-Antikörper-assoziierten Erkrankung (MOGAD). Klin Monbl Augenheilkd 2022; 239:1315-1324. [DOI: 10.1055/a-1918-1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ZusammenfassungDie Aquaporin-4-Antikörper-positive Neuromyelitis-optica-Spektrum-Erkrankung (engl. NMOSD) und die Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Erkrankung (engl. MOGAD) sind
Autoimmunerkrankungen des zentralen Nervensystems. Typische Erstmanifestationen sind bei Erwachsenen Optikusneuritis und Myelitis. Eine Beteiligung auch von Hirn und Hirnstamm, spätestens im
weiteren Verlauf, ist häufig. Während die NMOSD nahezu immer schubförmig verläuft, nimmt die MOGAD gelegentlich einen monophasischen Verlauf. Die Differenzialdiagnostik ist anspruchsvoll und
stützt sich auf u. a. auf radiologische und serologische Befunde. Die Abgrenzung von der häufigeren neuroinflammatorischen Erkrankung, Multiple Sklerose (MS), ist von erheblicher Bedeutung,
da sich Behandlung und langfristige Prognose von NMOSD, MOGAD und MS wesentlich unterscheiden. Die vielfältigen Symptome und die umfangreiche Diagnostik machen eine enge Zusammenarbeit
zwischen Ophthalmologie, Neurologie und Radiologie erforderlich. Dieser Artikel gibt einen Überblick über typische MRT-Befunde und die serologische Antikörperdiagnostik bei NMOSD und MOGAD.
Zwei illustrative Fallberichte aus der ärztlichen Praxis ergänzen die Darstellung.
Collapse
Affiliation(s)
- Darius Mewes
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Patrick Schindler
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ahmed Abdelrahim Ahmed Khalil
- Centrum für Schlaganfallforschung, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Abteilung Neurologie, Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Deutschland
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Sven Jarius
- AG Molekulare Neuroimmunologie, Neurologische Klinik, Universität Heidelberg, Heidelberg, Deutschland
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Claudia Chien
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
3
|
Petrikowski L, Reinehr S, Haupeltshofer S, Deppe L, Graz F, Kleiter I, Dick HB, Gold R, Faissner S, Joachim SC. Progressive Retinal and Optic Nerve Damage in a Mouse Model of Spontaneous Opticospinal Encephalomyelitis. Front Immunol 2022; 12:759389. [PMID: 35140707 PMCID: PMC8818777 DOI: 10.3389/fimmu.2021.759389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) are antibody mediated CNS disorders mostly affecting the optic nerve and spinal cord with potential severe impact on the visual pathway. Here, we investigated inflammation and degeneration of the visual system in a spontaneous encephalomyelitis animal model. We used double-transgenic (2D2/Th) mice which develop a spontaneous opticospinal encephalomyelitis (OSE). Retinal morphology and its function were evaluated via spectral domain optical coherence tomography (SD-OCT) and electroretinography (ERG) in 6- and 8-week-old mice. Immunohistochemistry of retina and optic nerve and examination of the retina via RT-qPCR were performed using markers for inflammation, immune cells and the complement pathway. OSE mice showed clinical signs of encephalomyelitis with an incidence of 75% at day 38. A progressive retinal thinning was detected in OSE mice via SD-OCT. An impairment in photoreceptor signal transmission occurred. This was accompanied by cellular infiltration and demyelination of optic nerves. The number of microglia/macrophages was increased in OSE optic nerves and retinas. Analysis of the retina revealed a reduced retinal ganglion cell number and downregulated Pou4f1 mRNA expression in OSE retinas. RT-qPCR revealed an elevation of microglia markers and the cytokines Tnfa and Tgfb. We also documented an upregulation of the complement system via the classical pathway. In summary, we describe characteristics of inflammation and degeneration of the visual system in a spontaneous encephalomyelitis model, characterized by coinciding inflammatory and degenerative mechanisms in both retina and optic nerve with involvement of the complement system.
Collapse
Affiliation(s)
- Laura Petrikowski
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Steffen Haupeltshofer
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Leonie Deppe
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Florian Graz
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - H. Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
- *Correspondence: Simon Faissner, ; Stephanie C. Joachim,
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Simon Faissner, ; Stephanie C. Joachim,
| |
Collapse
|
4
|
[Aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis. A brief review]. DER NERVENARZT 2021; 92:317-333. [PMID: 33787942 DOI: 10.1007/s00115-021-01106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Aquaporin 4 (AQP4) immunoglobulin (Ig)G-associated neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein immunoglobulin (Ig)G-associated encephalomyelitis (MOG-EM, also termed MOG antibody-associated disease, MOGAD) are important autoimmune differential diagnoses of multiple sclerosis (MS), which differ from MS with respect to optimum treatment and prognosis. AQP4 IgG-positive NMOSD take a relapsing course in virtually all cases and MOG-EM in at least 80% of adult cases. Both diseases can quickly lead to permanent disability if left untreated, although MOG-EM is associated with a better overall long-term prognosis. Antibody testing must be carried out by means of so-called cell-based assays. A number of red flags have been defined that must be checked prior to making a diagnosis of NMOSD or MOG-EM. Acute attacks are treated using high-dose glucocorticoids and plasma exchange or immunoadsorption. Rituximab and other immunosuppressants are used off-label for attack prevention. Recently, eculizumab, a C5 complement inhibitor, has been approved in the European Union (EU) for the treatment of patients with AQP4 IgG-positive NMOSD. This article gives a brief overview of the clinical and paraclinical features, pathology, treatment and prognosis of these rare disorders.
Collapse
|