1
|
Gurley BJ, Chittiboyina AG, ElSohly MA, Yates CR, Avula B, Walker LA, Khan SI, Khan IA. The National Center for Natural Products Research (NCNPR) at 30: A Legacy of Pioneering Research in Natural Products and Dietary Supplements. J Diet Suppl 2024; 22:193-218. [PMID: 39381905 DOI: 10.1080/19390211.2024.2410758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Since its establishment in 1994, the National Center for Natural Products Research (NCNPR) at the University of Mississippi has made notable contributions to the field of natural product research, coinciding with the passage of the Dietary Supplement Health and Education Act. Over the past three decades, the Center has focused on studying plants, herbs, and other natural materials for applications in medicine, agriculture, and nutraceuticals, particularly in the area of botanical dietary supplements. NCNPR scientists have been actively engaged in developing and improving quality control measures to help ensure the safety of dietary supplements in response to a growing market. The Center's research efforts have led to its designation as a U.S. Food and Drug Administration Center of Excellence, reflecting its role in advancing scientific understanding of natural products. Through collaborations with various stakeholders and regulators, NCNPR has contributed to shaping the regulatory landscape for botanical dietary supplements, highlighting both their potential health benefits and associated risks, such as product adulteration. The Center's influence is also evident internationally, as demonstrated by its annual International Conference on the Science of Botanicals, which will mark its 26th year in April 2025. This overview outlines NCNPR's role in supporting research, regulation, and safety in the natural products field.
Collapse
Affiliation(s)
- Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - C Ryan Yates
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Feng J, Liu Y, Xie A, Yang Y, Lv F, Wei J. Successful development of molecular diagnostic technology combining mini-barcoding and high-resolution melting for traditional Chinese medicine agarwood species based on single-nucleotide polymorphism in the chloroplast genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1405168. [PMID: 39145191 PMCID: PMC11322813 DOI: 10.3389/fpls.2024.1405168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024]
Abstract
Agarwood is a valuable traditional medicine and fragrance. The production process is a typical injury-induced defense response. Currently, there are approximately 22 known species in the genus Aquilaria Lam., all of which can produce agarwood, whereas there are only two legal species of traditional Chinese medicinal agarwood, Aquilaria sinensis (Lour.) Spreng. and Aquilaria agallocha (Lour.) Roxb. The Taiwan herbal Pharmacopoeia of China stipulates that the medicinal agarwood species are A. sinensis and its relatives in the same genus. Moreover, there are five species of agarwood available for clinical medicinal use in Japan, including A. agallocha and A. sinensis, which are often confused with each other or used in a mixed way in the trade process. Therefore, accurate identification of traditional Chinese medicinal agarwood species is important to ensure the authenticity of traditional medicines and to guide the safety of clinical medication. In this study, 59 specific single-nucleotide polymorphism loci were screened and obtained from the chloroplast genomes of 12 species of the genus Aquilaria Lam. We established an identification method for traditional Chinese medicinal agarwood using mini-barcoding combined with high-resolution melting (HRM) and designed and validated 10 pairs of primers from the psbM-trnD, psbA, rps16, petN, ndhE-psaC, rps4, atpE, ycf1, rps15-trnN, and matK regions. The amplification products were all less than 200 bp, with a high success rate of amplification. The method was applied to successfully identify traditional Chinese medicinal agarwood species from commercial agarwood samples. Overall, the sensitivity of this method was sufficient to detect 1% of adulterants in medicinal agarwood products, proving that mini-barcoding HRM is a powerful and flexible tool. This method can be used as a fast and effective high-throughput method for authenticity testing of traditional Chinese medicinal agarwood and its raw materials containing agarwood-containing proprietary Chinese medicines and is recommended for industrial applications.
Collapse
Affiliation(s)
- Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Anzhen Xie
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yun Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Feifei Lv
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & International Joint Research Center for Quality of Traditional Chinese Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Chen S, Yin X, Han J, Sun W, Yao H, Song J, Li X. DNA barcoding in herbal medicine: Retrospective and prospective. J Pharm Anal 2023; 13:431-441. [PMID: 37305789 PMCID: PMC10257146 DOI: 10.1016/j.jpha.2023.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
DNA barcoding has been widely used for herb identification in recent decades, enabling safety and innovation in the field of herbal medicine. In this article, we summarize recent progress in DNA barcoding for herbal medicine to provide ideas for the further development and application of this technology. Most importantly, the standard DNA barcode has been extended in two ways. First, while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples, super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels. Second, mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials. In addition, some molecular techniques, such as high-throughput sequencing and isothermal amplification, are combined with DNA barcodes for species identification, which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era. Furthermore, standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference sequences for species identification, which increases the accuracy and credibility of species discrimination based on DNA barcodes. In summary, DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.
Collapse
Affiliation(s)
- Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianmei Yin
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|