1
|
Seitz IP, Wozar F, Ochakovski GA, Reichel FF, Korte S, Korbmacher B, Wilhelm B, Süsskind D, Bartz-Schmidt KU, Fischer MD, Peters T. Ocular Safety and Toxicology of Subretinal Gene Therapy With rAAV.hPDE6A in Nonhuman Primates. Transl Vis Sci Technol 2025; 14:29. [PMID: 39878701 PMCID: PMC11781330 DOI: 10.1167/tvst.14.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/10/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose Reports of gene therapy-associated retinal atrophies and inflammation have highlighted the importance of preclinical safety assessments of adeno-associated virus (AAV) vector systems. We evaluated in nonhuman primates (NHPs) the ocular safety and toxicology of a novel AAV gene therapy targeting retinitis pigmentosa caused by mutations in PDE6A, which has since been used in a phase I/II clinical trial (NCT04611503). Methods A total of 34 healthy cynomolgus animals (Macaca fascicularis) were treated with subretinal injections of rAAV.hPDE6A and followed over 13 weeks. Three dose levels (low: 1 × 1011, intermediate: 5 × 1011, and high: 1 × 1012 vector genomes [vg]) were compared to sham-injected controls. Safety and toxicity were determined using ophthalmic examinations, electroretinography, ocular histology, and retinal imaging. Results At the low and intermediate doses, inflammation was mild, electroretinography response was unimpeded, and histology results were in line with surgically induced changes. In contrast, three high-dose animals displayed atrophic changes of the retina and abnormalities in electroretinography, which were considered test article related and adverse. Conclusions A single subretinal injection of up to 5 × 1011 vg was well tolerated, and a 10-fold lower dose of 5 × 1010 vg was chosen as the starting dose for the ongoing phase I/II clinical trial. Atrophic retinal changes and abnormalities in electroretinography emerged as dose-limiting findings in the high-dose cohort. Translational Relevance This study demonstrates that treatment candidate rAAV.PDE6A was well tolerated in NHPs. Occurrence of retinal atrophy as a dose-limiting finding highlights the importance of further study into the mechanisms of atrophy induction after retinal gene therapy.
Collapse
Affiliation(s)
- Immanuel P. Seitz
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Fabian Wozar
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Felix F. Reichel
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Sven Korte
- Labcorp Early Development Services GmbH, Muenster, Germany
- Virscio, Inc., New Haven, CT, USA
| | | | - Barbara Wilhelm
- STZ eyetrialat the Centre for Ophthalmology, Tuebingen, Germany
| | - Daniela Süsskind
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Karl-Ulrich Bartz-Schmidt
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - M. Dominik Fischer
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tobias Peters
- STZ eyetrialat the Centre for Ophthalmology, Tuebingen, Germany
| | - for the RD Cure Consortium
- University Eye Hospital Tuebingen, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- University Eye Hospital Munich, Munich, Germany
- Labcorp Early Development Services GmbH, Muenster, Germany
- Virscio, Inc., New Haven, CT, USA
- STZ eyetrialat the Centre for Ophthalmology, Tuebingen, Germany
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Hu J, Sun Y, Li B, Liu Z, Wang Z, Gao Q, Guo M, Liu G, Zhao KT, Gao C. Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat Biotechnol 2024; 42:936-945. [PMID: 37640945 DOI: 10.1038/s41587-023-01910-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Transcription-activator-like effector (TALE)-based tools for base editing of nuclear and organellar DNA rely on double-stranded DNA deaminases, which edit substrate bases on both strands of DNA, reducing editing precision. Here, we present CyDENT base editing, a CRISPR-free, strand-selective, modular base editor. CyDENT comprises a pair of TALEs fused with a FokI nickase, a single-strand-specific cytidine deaminase and an exonuclease to generate a single-stranded DNA substrate for deamination. We demonstrate effective base editing in nuclear, mitochondrial and chloroplast genomes. At certain mitochondrial sites, we show editing efficiencies of 14% and strand specificity of 95%. Furthermore, by exchanging the CyDENT deaminase with one that prefers editing GC motifs, we demonstrate up to 20% mitochondrial base editing at sites that are otherwise inaccessible to editing by other methods. The modular nature of CyDENT enables a suite of bespoke base editors for various applications.
Collapse
Affiliation(s)
- Jiacheng Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | - Guanwen Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|