1
|
Hüfner M, Rauch N, Schwarz-Herzke B, Knorr IJ, Sager M, Drescher D, Becker K. Micro-angiogenic patterns around orthodontic implants migrating in bone: A micro-CT study in the rat tail model. J Clin Periodontol 2021; 49:188-197. [PMID: 34818684 DOI: 10.1111/jcpe.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022]
Abstract
AIM Recent studies revealed that implants can migrate in bone when subjected to continuous loading. Since this process is suspected to be accompanied by bone remodelling, which requires blood vessel formation, the present work aimed at assessing the micro-angiogenic patterns around migrating implants. MATERIALS AND METHODS In 16 rats, two customized implants were placed in a single tail vertebra and connected with contraction springs (forces: 0 N, 0.5 N, 1.0 N, 1.5 N). After 2 or 8 weeks of loading, the animals were scanned by micro-CT before and after vasculature perfusion with a silicone rubber. Vessels were segmented by subtraction of the two micro-CT scans. Vessel thickness (V.Th), vessel volume per total volume (VV/TV), and vascular spacing (V.Sp) were assessed in a peri-implant volume of interest (VOI) around each implant. RESULTS At 2 weeks of loading, force magnitude was significantly associated with VV/TV and V.Th values (χ2 = 10.942, p < .001 and χ2 = 6.028, p = .010, respectively). No significant differences were observed after 8 weeks of loading. CONCLUSIONS Within the limitations of an animal study, peri-implant vessel thickness and density were associated with force magnitude in the early loading phase, whereas effects diminished after 8 weeks of loading.
Collapse
Affiliation(s)
- Mira Hüfner
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Nicole Rauch
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | - Ivonne Jeanette Knorr
- Central Unit for Animal Research and Scientific Animal Welfare Affairs, University of Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Scientific Animal Welfare Affairs, University of Düsseldorf, Düsseldorf, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Szabelska A, Tatara MR, Krupski W. Morphological, densitometric and mechanical properties of mandible in 5-month-old Polish Merino sheep. BMC Vet Res 2017; 13:12. [PMID: 28056959 PMCID: PMC5217452 DOI: 10.1186/s12917-016-0921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/09/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Among bones building the axial and appendicular skeleton, the mandible is characterized by unique morphological and functional traits. The aim of the study was to evaluate morphological, densitometric and mechanical properties of mandible in 5-month-old Polish Merino sheep. Using quantitative computed tomography, volumetric bone mineral density (vBMD) and calcium hydroxyapatite density of the cortical bone (CbCa-HA), mean vBMD (MvBMD) and total bone volume were determined. Using computed tomography cross-sectional scans of the mandible, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined. Three-point bending test was applied to determine mechanical properties. Serum concentration of insulin-like growth factor I (IGF-I) and bone-specific alkaline phosphatase (BAP) was also measured. RESULTS All the investigated morphometric, densitometric and mechanical parameters of the right and left mandibular halves were not significantly different (P > 0.05). There was no correlation of final body weight, MvBMD, CbCa-HA, BAP and IGF-I with all the analyzed parameters of mandible (P > 0.05). However, positive correlations between the other investigated morphometric, densitometric and mechanical parameter of mandible were found (P < 0.05). CONCLUSIONS Relationships between morphological, densitometric and mechanical parameters of the mandible indicate that the elaborated experimental model may serve for further studies on metabolic responses of skeletal system to physiological, nutritional, pharmacological, toxicological and environmental factors.
Collapse
Affiliation(s)
- Anna Szabelska
- Department of Prosthetic Dentistry, Medical University in Lublin, ul. Karmelicka 7, 20-081 Lublin, Poland
| | - Marcin R. Tatara
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950 Lublin, Poland
| | - Witold Krupski
- II Department of Radiology, Medical University in Lublin, ul. Staszica 16, 20-081 Lublin, Poland
| |
Collapse
|
3
|
Xie C, Wei W, Schenk A, Schwen LO, Zafarnia S, Schwier M, Gremse F, Jank I, Dirsch O, Dahmen U. Visualization of Vascular and Parenchymal Regeneration after 70% Partial Hepatectomy in Normal Mice. J Vis Exp 2016. [PMID: 27685096 DOI: 10.3791/53935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A modified silicone injection procedure was used for visualization of the hepatic vascular tree. This procedure consisted of in-vivo injection of the silicone compound, via a 26 G catheter, into the portal or hepatic vein. After silicone injection, organs were explanted and prepared for ex-vivo micro-CT (µCT) scanning. The silicone injection procedure is technically challenging. Achieving a successful outcome requires extensive microsurgical experience from the surgeon. One of the challenges of this procedure involves determining the adequate perfusion rate for the silicone compound. The perfusion rate for the silicone compound needs to be defined based on the hemodynamic of the vascular system of interest. Inappropriate perfusion rate can lead to an incomplete perfusion, artificial dilation and rupturing of vascular trees. The 3D reconstruction of the vascular system was based on CT scans and was achieved using preclinical software such as HepaVision. The quality of the reconstructed vascular tree was directly related to the quality of silicone perfusion. Subsequently computed vascular parameters indicative of vascular growth, such as total vascular volume, were calculated based on the vascular reconstructions. Contrasting the vascular tree with silicone allowed for subsequent histological work-up of the specimen after µCT scanning. The specimen can be subjected to serial sectioning, histological analysis and whole slide scanning, and thereafter to 3D reconstruction of the vascular trees based on histological images. This is the prerequisite for the detection of molecular events and their distribution with respect to the vascular tree. This modified silicone injection procedure can also be used to visualize and reconstruct the vascular systems of other organs. This technique has the potential to be extensively applied to studies concerning vascular anatomy and growth in various animal and disease models.
Collapse
Affiliation(s)
- Chichi Xie
- Department of General, Visceral and Vascular Surgery, Jena University Hospital
| | - Weiwei Wei
- Department of General, Visceral and Vascular Surgery, Jena University Hospital
| | - Andrea Schenk
- Fraunhofer Institute for Medical Image Computing MEVIS
| | | | - Sara Zafarnia
- Experimental Molecular Imaging, RWTH Aachen University
| | | | - Felix Gremse
- Experimental Molecular Imaging, RWTH Aachen University
| | - Isabel Jank
- Department of General, Visceral and Vascular Surgery, Jena University Hospital
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital;
| |
Collapse
|
4
|
Quantification of Hepatic Vascular and Parenchymal Regeneration in Mice. PLoS One 2016; 11:e0160581. [PMID: 27494255 PMCID: PMC4975469 DOI: 10.1371/journal.pone.0160581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Liver regeneration consists of cellular proliferation leading to parenchymal and vascular growth. This study complements previous studies on cellular proliferation and weight recovery by (1) quantitatively describing parenchymal and vascular regeneration, and (2) determining their relationship. Both together are needed to (3) characterize the underlying growth pattern. METHODS Specimens were created by injecting a polymerizing contrast agent in either portal or hepatic vein in normal or regenerating livers after 70% partial hepatectomy. 3D image data were obtained through micro-CT scanning. Parenchymal growth was assessed by determining weight and volume of the regenerating liver. Vascular growth was described by manually determined circumscribed parameters (maximal vessel length and radius of right inferior portal/hepatic vein), automatically determined cumulative parameters (total edge length and total vascular volume), and parameters describing vascular density (total edge length/volume, vascular volume fraction). The growth pattern was explored by comparing the relative increase of these parameters to the increase expected in case of isotropic expansion. RESULTS Liver volume recovery paralleled weight recovery and reached 90% of the original liver volume within 7 days. Comparing radius-related vascular parameters immediately after surgical resection and after virtual resection in-silico revealed a slight increase, possibly reflecting the effect of resection-induced portal hyperperfusion. Comparing length-related parameters between post-operative day 7 and after virtual resection showed similar vascular growth in both vascular systems investigated. In contrast, radius-related parameters increased slightly more in the portal vein. Despite the seemingly homogeneous 3D growth, the observed vascular parameters were not compatible with the hypothesis of isotropic expansion of liver parenchyma and vascular structures. CONCLUSION We present an approach for the quantitative analysis of the vascular systems of regenerating mouse livers. We applied this technique for assessing the hepatic growth pattern. Prospectively, this approach can be used to investigate hepatic vascular regeneration under different conditions.
Collapse
|
5
|
Wang HK, Wang YX, Xue CB, Li ZMY, Huang J, Zhao YH, Yang YM, Gu XS. Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning. Neural Regen Res 2016; 11:168-73. [PMID: 26981108 PMCID: PMC4774213 DOI: 10.4103/1673-5374.175065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo.
Collapse
Affiliation(s)
- Hong-Kui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng-Bin Xue
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhen-Mei-Yu Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Huang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Hong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Min Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Song Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Wu X, Wang Q, Kang N, Wu J, Gu C, Bi J, Lv T, Xie F, Hu J, Liu X, Cao Y, Xiao R. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs. J Tissue Eng Regen Med 2015; 11:542-552. [PMID: 26251084 DOI: 10.1002/term.2076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaowei Wu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Qian Wang
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Ning Kang
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jingguo Wu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Congmin Gu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jianhai Bi
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Tao Lv
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Fangnan Xie
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jiewei Hu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Xia Liu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Yilin Cao
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Ran Xiao
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| |
Collapse
|
7
|
Michel G, Blery P, Pilet P, Guicheux J, Weiss P, Malard O, Espitalier F. Micro-CT Analysis of Radiation-Induced Osteopenia and Bone Hypovascularization in Rat. Calcif Tissue Int 2015; 97:62-8. [PMID: 25953705 DOI: 10.1007/s00223-015-0010-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Abstract
Treatment of carcinomas of the upper aerodigestive tract often requires external radiation therapy. However, radiation affects all the components of bone, with different degrees of sensitivity, and may produce severe side effects such as mandibular osteoradionecrosis (ORN). Intraosseous vascularization is thought to be decreased after irradiation, but its impact on total bone volume is still controversial. The aim of this study was to compare intraosseous vascularization, cortical bone thickness, and total bone volume in a rat model of ORN versus nonirradiated rats, using a micro-computed tomography (micro-CT) analysis after intracardiac injection of a contrast agent. The study was performed on 8-week-old Lewis 1A rats (n = 14). Eleven rats underwent external irradiation on the hind limbs by a single 80-Gy dose. Three rats did not receive irradiation and served as controls for statistical analysis. Eight weeks after the external irradiation, all the animals received a barium sulfate intracardiac injection under general anesthesia. All samples were analyzed with the micro-computed tomography system at a resolution of 5.5 μm. The images were later processed to create 3D reconstructions and study vascularization, bone volume, and cortical thickness. Data from irradiated and nonirradiated rats were compared using the Kruskal-Wallis test. No animal died after irradiation. Nineteen irradiated tibias and six nonirradiated tibias were included for micro-CT analysis. The vessel percentage was significantly lower in irradiated bones (p = 0.0001). The distance between the vessels, a marker of vascular destruction, was higher after irradiation (p = 0.001). The vessels were also more altered distally after irradiation (p = 0.028). Cortical thickness was severely decreased after irradiation, sometimes even reduced to zero. Both trabecular and cortical structures were destroyed after irradiation, with wide bone gaps. Finally, both total bone volume (p = 0.0001) and cortical thickness (p = 0.0001) were significantly decreased in irradiated tibias compared to nonirradiated tibias. These results led to multiple spontaneous fractures in the irradiated group, and the destruction of intraosseous vessels observed macroscopically with the radiographic preview. This study revealed the impact of radiation on intraosseous vasculature and cortical bone with a micro-CT analysis in a rat ORN model. Hypovascularization and osteopenia are consistent with the literature, contributing a morphological scale with high resolution. Visualization of the vasculature by micro-CT is an innovative technique to see the changes after radiation, and should help adjust bone tissue engineering in irradiated bone.
Collapse
Affiliation(s)
- Guillaume Michel
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire de Nantes, CHU Hôtel Dieu, 1, Place A. Ricordeau, BP 1005, 44093, Nantes Cedex 01, France,
| | | | | | | | | | | | | |
Collapse
|
8
|
Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plast Reconstr Surg 2015; 135:799-806. [PMID: 25415276 DOI: 10.1097/prs.0000000000001024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. METHODS Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. RESULTS Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. CONCLUSIONS Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.
Collapse
|
9
|
Kang SY, Deshpande SS, Donneys A, Rodriguez JJ, Nelson NS, Felice PA, Chepeha DB, Buchman SR. Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis. Bone 2013; 56:9-15. [PMID: 23643680 PMCID: PMC3758112 DOI: 10.1016/j.bone.2013.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Radiation treatment results in a severe diminution of osseous vascularity. Intermittent parathyroid hormone (PTH) has been shown to have an anabolic effect on osteogenesis, though its impact on angiogenesis remains unknown. In this murine model of distraction osteogenesis, we hypothesize that radiation treatment will result in a diminution of vascularity in the distracted regenerate and that delivery of intermittent systemic PTH will promote angiogenesis and reverse radiation induced hypovascularity. MATERIALS AND METHODS Nineteen Lewis rats were divided into three groups. All groups underwent distraction of the left mandible. Two groups received radiation treatment to the left mandible prior to distraction, and one of these groups was treated with intermittent subcutaneous PTH (60 μg/kg, once daily) beginning on the first day of distraction for a total duration of 21 days. One group underwent mandibular distraction alone, without radiation. After consolidation, the rats were perfused and imaged with micro-CT angiography and quantitative vascular analysis was performed. RESULTS Radiation treatment resulted in a severe diminution of osseous vascularity in the distracted regenerate. In irradiated mandibles undergoing distraction osteogenesis, treatment with intermittent PTH resulted in significant increases in vessel volume fraction, vessel thickness, vessel number, degree of anisotropy, and a significant decrease in vessel separation (p < 0.05). No significant difference in quantitative vascularity existed between the group that was irradiated, distracted and treated with PTH and the group that underwent distraction osteogenesis without radiation treatment. CONCLUSIONS We quantitatively demonstrate that radiation treatment results in a significant depletion of osseous vascularity, and that intermittent administration of PTH reverses radiation induced hypovascularity in the murine mandible undergoing distraction osteogenesis. While the precise mechanism of PTH-induced angiogenesis remains to be elucidated, this report adds a key component to the pleotropic effect of intermittent PTH on bone formation and further supports the potential use of PTH to enhance osseous regeneration in the irradiated mandible.
Collapse
Affiliation(s)
- Stephen Y. Kang
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., 1904 TC / SPC 5312, Ann Arbor, MI, USA
| | - Sagar S. Deshpande
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alexis Donneys
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joey J. Rodriguez
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Noah S. Nelson
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter A. Felice
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Douglas B. Chepeha
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., 1904 TC / SPC 5312, Ann Arbor, MI, USA
| | - Steven R. Buchman
- Craniofacial Research Laboratory, University of Michigan Medical School, Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan Health System, 1500 E. Medical Center Dr., F7894 / 5219, Ann Arbor, MI, USA
| |
Collapse
|