1
|
Yue K, Webster J, Grabowski T, Shojaie A, Jahanian H. Iterative Data-adaptive Autoregressive (IDAR) whitening procedure for long and short TR fMRI. Front Neurosci 2024; 18:1381722. [PMID: 39156630 PMCID: PMC11327036 DOI: 10.3389/fnins.2024.1381722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Functional magnetic resonance imaging (fMRI) has become a fundamental tool for studying brain function. However, the presence of serial correlations in fMRI data complicates data analysis, violates the statistical assumptions of analyses methods, and can lead to incorrect conclusions in fMRI studies. Methods In this paper, we show that conventional whitening procedures designed for data with longer repetition times (TRs) (>2 s) are inadequate for the increasing use of short-TR fMRI data. Furthermore, we comprehensively investigate the shortcomings of existing whitening methods and introduce an iterative whitening approach named "IDAR" (Iterative Data-adaptive Autoregressive model) to address these shortcomings. IDAR employs high-order autoregressive (AR) models with flexible and data-driven orders, offering the capability to model complex serial correlation structures in both short-TR and long-TR fMRI datasets. Results Conventional whitening methods, such as AR(1), ARMA(1,1), and higher-order AR, were effective in reducing serial correlation in long-TR data but were largely ineffective in even reducing serial correlation in short-TR data. In contrast, IDAR significantly outperformed conventional methods in addressing serial correlation, power, and Type-I error for both long-TR and especially short-TR data. However, IDAR could not simultaneously address residual correlations and inflated Type-I error effectively. Discussion This study highlights the urgent need to address the problem of serial correlation in short-TR (< 1 s) fMRI data, which are increasingly used in the field. Although IDAR can address this issue for a wide range of applications and datasets, the complexity of short-TR data necessitates continued exploration and innovative approaches. These efforts are essential to simultaneously reduce serial correlations and control Type-I error rates without compromising analytical power.
Collapse
Affiliation(s)
- Kun Yue
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Jason Webster
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Thomas Grabowski
- Department of Radiology, University of Washington, Seattle, WA, United States
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Hesamoddin Jahanian
- Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Mirkin S, Albensi BC. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023; 15:1094233. [PMID: 37187577 PMCID: PMC10177660 DOI: 10.3389/fnagi.2023.1094233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that affects memory, thinking, behavior, and other cognitive functions. Although there is no cure, detecting AD early is important for the development of a therapeutic plan and a care plan that may preserve cognitive function and prevent irreversible damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), has served as a critical tool in establishing diagnostic indicators of AD during the preclinical stage. However, as neuroimaging technology quickly advances, there is a challenge in analyzing and interpreting vast amounts of brain imaging data. Given these limitations, there is great interest in using artificial Intelligence (AI) to assist in this process. AI introduces limitless possibilities in the future diagnosis of AD, yet there is still resistance from the healthcare community to incorporate AI in the clinical setting. The goal of this review is to answer the question of whether AI should be used in conjunction with neuroimaging in the diagnosis of AD. To answer the question, the possible benefits and disadvantages of AI are discussed. The main advantages of AI are its potential to improve diagnostic accuracy, improve the efficiency in analyzing radiographic data, reduce physician burnout, and advance precision medicine. The disadvantages include generalization and data shortage, lack of in vivo gold standard, skepticism in the medical community, potential for physician bias, and concerns over patient information, privacy, and safety. Although the challenges present fundamental concerns and must be addressed when the time comes, it would be unethical not to use AI if it can improve patient health and outcome.
Collapse
Affiliation(s)
- Sophia Mirkin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Wu D, Zhang M, Geng J, Chen X. Noninvasive Prediction of Language Lateralization Through Arcuate Fasciculus Tractography in Patients With Low-Grade Gliomas: Correlation With The Wada Test. Front Oncol 2022; 12:936228. [PMID: 35936675 PMCID: PMC9354698 DOI: 10.3389/fonc.2022.936228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Language lateralization is unique to humans, so clarifying dominant side is helpful for removing gliomas involving language areas. This study investigated the arcuate fasciculus (AF) reconstructed by diffusion tensor imaging–based tractography (DTT) in predicting language lateralization in patients with low-grade gliomas. Wada test was performed to determine the language Dominant Hemisphere (DH) and the Contralateral Hemisphere. DTI data [1.5-T magnetic resonance imaging (MRI)] was used to reconstruct AF by two independent operators using a DTT method. Fiber number, volume, and fractional anisotropy (FA) of bilateral reconstructed AF were measured. Lateralization indexes (LIs), including Number Index (NI), Volume Index (VI), and FA Index (FI), were accordingly calculated by mean values. A total of 21 patients with WHO Grade II gliomas in the left hemisphere were included. Every patient received a successful Wada test and reconstruction of bilateral AF. DTT metrics of reconstructed AF, such as fiber number, volume, and FA, showed significantly asymmetric between hemispheres. All the LI (NI, VI, and FI) values were statistically higher in the DH determined by the Wada test. No discrepancy was found between the prediction using the cutoff values of DTT metrics and the results of WADA test. The Kappa values were 0.829, 0.696, and 0.611, indicating NI and VI as more reliable predictor than FI although FI itself may also be feasible. Compared with the Wada test, we consider that DTT of AF is a non-invasive, simple, relatively accurate, and feasible method in predicting language lateralization in patients with low-grade gliomas.
Collapse
Affiliation(s)
- Dongdong Wu
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern Theater of Chinese Navy, Sanya, China
| | - Jiefeng Geng
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Chen
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Xiaolei Chen,
| |
Collapse
|
5
|
Asman P, Prabhu S, Tummala S, Ince NF. Real-Time Delineation of the Central Sulcus with the Spatial Profile of SSEPs Captured with High-Density Ecog Grid. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4892-4895. [PMID: 36085684 DOI: 10.1109/embc48229.2022.9871900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cortical mapping is widely employed to define the sensorimotor area and delineate the central sulcus (CS) during awake craniotomies. The approach involves the gold standard somatosensory evoked potentials (SSEPs) recorded with electrocorticogram (ECoG) strip electrodes. However, the evoked response can be misconstrued from the manual peak interpretation due to the poor spatial resolution of the strip electrode or when the electrode does not precisely cover the desired cortical area. This can lead to unintentional damage to the eloquent cortex. We present a soft real-time computer based visualization system that uses recorded SSEPs with a subdural grid to aid in cortical mapping. The neural data during electrical stimulation of the median nerve at 0.6Hz are picked up with a bio-amplifier at 2.4kHz. The stimulation artifact recorded from the bipolar electromyogram (EMG) is used as the stimulation onset. The ECoG data are assessed online with MATLAB Simulink to process and visualize the SSEPs waveform. The visualization system is programmed to display the SSEPs peak activation as a heat map on a 2D grid and projected onto a screen, showcasing the nature of the cortical activities over the contact surface area. Since the grid occupies a large cortical surface, the heatmap is able to delineate the central sulcus. The map can be viewed at any time point along the SSEP trace without the need for peak interpretation. With the goal to provide additional information during cortical mapping and facilitate interpretation of ECoG grid data, we believe that this visualization system will aid in rapid definition of the sensorimotor area during surgical planning. Clinical Relevance- This real-time visualization system can be used to delineate the central sulcus in a short time during awake craniotomies.
Collapse
|
6
|
Imataka S, Enatsu R, Hirano T, Sasagawa A, Arihara M, Kuribara T, Ochi S, Mikuni N. Motor Mapping with Functional Magnetic Resonance Imaging: Comparison with Electrical Cortical Stimulation. Neurol Med Chir (Tokyo) 2022; 62:215-222. [PMID: 35296585 PMCID: PMC9178115 DOI: 10.2176/jns-nmc.2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to evaluate motor area mapping using functional magnetic resonance imaging (fMRI) compared with electrical cortical stimulation (ECS). Motor mapping with fMRI and ECS were retrospectively compared in seven patients with refractory epilepsy in which the primary motor (M1) areas were identified by fMRI and ECS mapping between 2012 and 2019. A right finger tapping task was used for fMRI motor mapping. Blood oxygen level-dependent activation was detected in the left precentral gyrus (PreCG) /postcentral gyrus (PostCG) along the "hand knob" of the central sulcus in all seven patients. Bilateral supplementary motor areas (SMAs) were also activated (n = 6), and the cerebellar hemisphere showed activation on the right side (n = 3) and bilateral side (n = 4). Furthermore, the premotor area (PM) and posterior parietal cortex (PPC) were also activated on the left side (n = 1) and bilateral sides (n = 2). The M1 and sensory area (S1) detected by ECS included fMRI-activated PreCG/PostCG areas with broader extent. This study showed that fMRI motor mapping was locationally well correlated to the activation of M1/S1 by ECS, but the spatial extent was not concordant. In addition, the involvement of SMA, PM/PPC, and the cerebellum in simple voluntary movement was also suggested. Combination analysis of fMRI and ECS motor mapping contributes to precise localization of M1/S1.
Collapse
Affiliation(s)
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | | | | | | | | | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University
| | | |
Collapse
|
7
|
Rødland E, Melleby KM, Specht K. Evaluation of a Simple Clinical Language Paradigm With Respect to Sensory Independency, Functional Asymmetry, and Effective Connectivity. Front Behav Neurosci 2022; 16:806520. [PMID: 35309683 PMCID: PMC8928437 DOI: 10.3389/fnbeh.2022.806520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
The present study replicates a known visual language paradigm, and extends it to a paradigm that is independent from the sensory modality of the stimuli and, hence, could be administered either visually or aurally, such that both patients with limited sight or hearing could be examined. The stimuli were simple sentences, but required the subject not only to understand the content of the sentence but also to formulate a response that had a semantic relation to the content of the presented sentence. Thereby, this paradigm does not only test perception of the stimuli, but also to some extend sentence and semantic processing, and covert speech production within one task. When the sensory base-line condition was subtracted, both the auditory and visual version of the paradigm demonstrated a broadly overlapping and asymmetric network, comprising distinct areas of the left posterior temporal lobe, left inferior frontal areas, left precentral gyrus, and supplementary motor area. The consistency of activations and their asymmetry was evaluated with a conjunction analysis, probability maps, and intraclass correlation coefficients (ICC). This underlying network was further analyzed with dynamic causal modeling (DCM) to explore whether not only the same brain areas were involved, but also the network structure and information flow were the same between the sensory modalities. In conclusion, the paradigm reliably activated the most central parts of the speech and language network with a great consistency across subjects, and independently of whether the stimuli were administered aurally or visually. However, there was individual variability in the degree of functional asymmetry between the two sensory conditions.
Collapse
Affiliation(s)
- Erik Rødland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Division of Psychiatry, Department of Child and Adolescent, Haukeland University Hospital, Bergen, Norway
| | - Kathrine Midgaard Melleby
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Adult Habilitation Section, Telemark Hospital Skien, Skien, Norway
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Karsten Specht,
| |
Collapse
|
8
|
Drakopoulos F, Tsolakis C, Angelopoulos A, Liu Y, Yao C, Kavazidi KR, Foroglou N, Fedorov A, Frisken S, Kikinis R, Golby A, Chrisochoides N. Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems. Front Digit Health 2021; 2:613608. [PMID: 34713074 PMCID: PMC8521897 DOI: 10.3389/fdgth.2020.613608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby handling deformation in the presence of resection is presented. To improve the user experience, we also present a new way of using mixed reality with ultrasound, MRI, and CT. Materials and methods: This study focuses on 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) registers preoperative and intraoperative MRI for each patient. The results are compared with three other readily available registration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid registration implemented in 3D Slicer v4.4.0; and PBNRR implemented in ITKv4.7.0, upon which A-PBNRR was based. Three measures were employed to facilitate a comprehensive evaluation of the registration accuracy: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Results: The A-PBNRR using multi-tissue mesh adaptation improved the accuracy of deformable registration by more than five times compared to rigid and traditional physics based non-rigid registration, and four times compared to B-Spline interpolation methods which are part of ITK and 3D Slicer. Performance analysis showed that A-PBNRR could be applied, on average, in <2 min, achieving desirable speed for use in a clinical setting. Conclusions: The A-PBNRR method performed significantly better than other readily available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room. A-PBNRR, coupled with the mixed reality system, presents a powerful and affordable solution compared to current neuronavigation systems.
Collapse
Affiliation(s)
- Fotis Drakopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Christos Tsolakis
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Angelos Angelopoulos
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| | - Yixun Liu
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States
| | - Chengjun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | | | - Nikolaos Foroglou
- Department of Neurosurgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andrey Fedorov
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexandra Golby
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Nikos Chrisochoides
- Center for Real-Time Computing, Old Dominion University, Norfolk, VA, United States.,Department of Computer Science, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
9
|
Fesharaki NJ, Mathew AB, Mathis JR, Huddleston WE, Reuss JL, Pillai JJ, DeYoe EA. Effects of Thresholding on Voxel-Wise Correspondence of Breath-Hold and Resting-State Maps of Cerebrovascular Reactivity. Front Neurosci 2021; 15:654957. [PMID: 34504411 PMCID: PMC8421787 DOI: 10.3389/fnins.2021.654957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging for presurgical brain mapping enables neurosurgeons to identify viable tissue near a site of operable pathology which might be at risk of surgery-induced damage. However, focal brain pathology (e.g., tumors) may selectively disrupt neurovascular coupling while leaving the underlying neurons functionally intact. Such neurovascular uncoupling can result in false negatives on brain activation maps thereby compromising their use for surgical planning. One way to detect potential neurovascular uncoupling is to map cerebrovascular reactivity using either an active breath-hold challenge or a passive resting-state scan. The equivalence of these two methods has yet to be fully established, especially at a voxel level of resolution. To quantitatively compare breath-hold and resting-state maps of cerebrovascular reactivity, we first identified threshold settings that optimized coverage of gray matter while minimizing false responses in white matter. When so optimized, the resting-state metric had moderately better gray matter coverage and specificity. We then assessed the spatial correspondence between the two metrics within cortical gray matter, again, across a wide range of thresholds. Optimal spatial correspondence was strongly dependent on threshold settings which if improperly set tended to produce statistically biased maps. When optimized, the two CVR maps did have moderately good correspondence with each other (mean accuracy of 73.6%). Our results show that while the breath-hold and resting-state maps may appear qualitatively similar they are not quantitatively identical at a voxel level of resolution.
Collapse
Affiliation(s)
- Nooshin J Fesharaki
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amy B Mathew
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jedidiah R Mathis
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy E Huddleston
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James L Reuss
- Prism Clinical Imaging, Inc., Milwaukee, WI, United States
| | - Jay J Pillai
- Neuroradiology Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Stopa BM, Senders JT, Broekman MLD, Vangel M, Golby AJ. Preoperative functional MRI use in neurooncology patients: a clinician survey. Neurosurg Focus 2021; 48:E11. [PMID: 32006949 DOI: 10.3171/2019.11.focus19779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Functional MRI (fMRI) is increasingly being investigated for use in neurosurgical patient care. In the current study, the authors characterize the clinical use of fMRI by surveying neurosurgeons' use of and attitudes toward fMRI as a surgical planning tool in neurooncology patients. METHODS A survey was developed to inquire about clinicians' use of and experiences with preoperative fMRI in the neurooncology patient population, including example case images. The survey was distributed to all neurosurgical departments with a residency program in the US. RESULTS After excluding incomplete surveys and responders that do not use fMRI (n = 11), 50 complete responses were included in the final analysis. Responders were predominantly from academic programs (88%), with 20 years or more in practice (40%), with a main area of practice in neurooncology (48%) and treating an adult population (90%). All 50 responders currently use fMRI in neurooncology patients, mostly for low- (94%) and high-grade glioma (82%). The leading decision factors for ordering fMRI were location of mass in dominant hemisphere, location in a functional area, motor symptoms, and aphasia. Across 10 cases, language fMRI yielded the highest interrater reliability agreement (Fleiss' kappa 0.437). The most common reasons for ordering fMRI were to identify language laterality, plan extent of resection, and discuss neurological risks with patients. Clinicians reported that fMRI results were not obtained when ordered a median 10% of the time and were suboptimal a median 27% of the time. Of responders, 70% reported that they had ever resected an fMRI-positive functional site, of whom 77% did so because the site was "cleared" by cortical stimulation. Responders reported disagreement between fMRI and awake surgery 30% of the time. Overall, 98% of responders reported that if results of fMRI and intraoperative mapping disagreed, they would rely on intraoperative mapping. CONCLUSIONS Although fMRI is increasingly being adopted as a practical preoperative planning tool for brain tumor resection, there remains a substantial degree of discrepancy with regard to its current use and presumed utility. There is a need for further research to evaluate the use of preoperative fMRI in neurooncology patients. As fMRI continues to gain prominence, it will be important for clinicians to collectively share best practices and develop guidelines for the use of fMRI in the preoperative planning phase of brain tumor patients.
Collapse
Affiliation(s)
- Brittany M Stopa
- 1Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joeky T Senders
- 1Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,2Department of Neurosurgery, University Medical Center, Utrecht, The Netherlands
| | - Marike L D Broekman
- 3Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; and
| | | | - Alexandra J Golby
- Departments of4Radiology and.,5Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Potigailo V, Kohli A, Pakpoor J, Cain DW, Passi N, Mohsen N. Recent Advances in Computed Tomography and MR Imaging. PET Clin 2020; 15:381-402. [PMID: 32888544 DOI: 10.1016/j.cpet.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous advanced MR imaging and computed tomographic techniques have been developed and implemented in clinical practice over the past several years resulting in increased diagnostic accuracy and improved patient care. In this article, the authors highlight recent and emerging imaging techniques in functional and structural MR imaging, perfusion and vascular imaging, standardization of imaging practices, and selected applications of artificial intelligence in clinical practice.
Collapse
Affiliation(s)
- Valeria Potigailo
- Department of Radiology, University of Colorado Anschutz Medical Center, 12401 East 17th Avenue, Leprino, Mail Stop L954, Aurora, CO 80045, USA
| | - Ajay Kohli
- Department of Radiology, University of Pennsylvania, Hospital of the University of Pennsylvania, 1 Silverstein Suite 130, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jina Pakpoor
- Department of Radiology, University of Pennsylvania, Hospital of the University of Pennsylvania, 1 Silverstein Suite 130, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Donald Wesley Cain
- Department of Radiology, University of Colorado Anschutz Medical Center, 12401 East 17th Avenue, Leprino, Mail Stop L954, Aurora, CO 80045, USA
| | - Neena Passi
- University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Nancy Mohsen
- Department of Radiology, University of Pennsylvania, Hospital of the University of Pennsylvania, 1 Silverstein Suite 130, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Catalino MP, Yao S, Green D, Laws ER, Golby AJ, Tie Y. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging. Neurosurg Focus 2020; 48:E9. [PMID: 32006946 PMCID: PMC7712886 DOI: 10.3171/2019.11.focus19773] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/13/2019] [Indexed: 01/15/2023]
Abstract
Neurosurgery has been at the forefront of a paradigm shift from a localizationist perspective to a network-based approach to brain mapping. Over the last 2 decades, we have seen dramatic improvements in the way we can image the human brain and noninvasively estimate the location of critical functional networks. In certain patients with brain tumors and epilepsy, intraoperative electrical stimulation has revealed direct links between these networks and their function. The focus of these techniques has rightfully been identification and preservation of so-called "eloquent" brain functions (i.e., motor and language), but there is building momentum for more extensive mapping of cognitive and emotional networks. In addition, there is growing interest in mapping these functions in patients with a broad range of neurosurgical diseases. Resting-state functional MRI (rs-fMRI) is a noninvasive imaging modality that is able to measure spontaneous low-frequency blood oxygen level-dependent signal fluctuations at rest to infer neuronal activity. Rs-fMRI may be able to map cognitive and emotional networks for individual patients. In this review, the authors give an overview of the rs-fMRI technique and associated cognitive and emotional resting-state networks, discuss the potential applications of rs-fMRI, and propose future directions for the mapping of cognition and emotion in neurosurgical patients.
Collapse
Affiliation(s)
- Michael P Catalino
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Department of Neurosurgery, University of North Carolina Hospitals, Chapel Hill, NC
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deborah Green
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Edward R Laws
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School Boston, MA
| |
Collapse
|
14
|
Mishra S, Manna K, Kayal U, Saha M, Chatterjee S, Chandra D, Hara M, Datta S, Bhaumik A, Das Saha K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: a theranostic approach for cancer management. RSC Adv 2020; 10:23148-23164. [PMID: 35520307 PMCID: PMC9054720 DOI: 10.1039/d0ra00664e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The development of drug carriers based on nanomaterials that can selectively carry chemotherapeutic agents to cancer cells has become a major focus in biomedical research. A novel pH-sensitive multifunctional envelope-type mesoporous silica nanoparticle (SBA-15) was fabricated for targeted drug delivery to human colorectal carcinoma cells (HCT-116). SBA-15 was functionalized with folic acid (FA), and the material was loaded with the water-insoluble flavonoid, quercetin (QN). Additionally, acid-labile magnetite Fe3O4 nanoparticles were embedded over the FA-functionalized QN-loaded monodisperse SBA-15 to prepare the highly orchestrated material FA-FE-SBA15QN. The in vitro and in vivo anti-carcinogenic efficacy of FA-FE-SBA15QN was carried out to explore the pH-sensitive QN release with putative mechanistic aspects. FA-FE-SBA15QN caused a marked tumor suppression, and triggered mitochondrial-dependent apoptosis through a redox-regulated cellular signaling system. Furthermore, FA-IO-SBA-15-QN initiated the c-Jun N-terminal Kinase (JNK)-guided H2AX phosphorylation, which relayed the downstream apoptotic signal to the phosphorylate tumor suppressor protein, p53. On the other hand, the selective inhibition of heat shock protein-27 (HSP-27) by FA-FE-SBA15QN augmented the apoptotic fate through JNK/H2AX/p53 axis. The in vitro and in vivo magnetic resonance imaging (MRI) studies have indicated the theranostic perspective of the composite. Thus, the result suggested that the newly synthesized FA-FE-SBA15QN could be used as a promising chemo theranostic material for the management of carcinoma. pH-Sensitive quercetin/Fe3O4 NPs loaded functionalized mesoporous SBA-15 fabricated for targeted drug delivery to colorectal carcinoma cells with high anti-carcinogenic efficacy.![]()
Collapse
Affiliation(s)
- Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Department of Chemical Technology
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Utpal Kayal
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Sauvik Chatterjee
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Debraj Chandra
- World Research Hub Initiative (WRHI)
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Sriparna Datta
- Department of Chemical Technology
- University of Calcutta
- Kolkata-700009
- India
| | - Asim Bhaumik
- School of Materials Sciences
- Indian Association of Cultivation of Science
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
15
|
Syed Nasser N, Ibrahim B, Sharifat H, Abdul Rashid A, Suppiah S. Incremental benefits of EEG informed fMRI in the study of disorders related to meso-corticolimbic dopamine pathway dysfunction: A systematic review of recent literature. J Clin Neurosci 2019; 65:87-99. [PMID: 30955950 DOI: 10.1016/j.jocn.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/25/2019] [Indexed: 02/02/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive imaging modality that enables the assessment of neural connectivity and oxygen utility of the brain using blood oxygen level dependent (BOLD) imaging sequence. Electroencephalography (EEG), on the other hands, looks at cortical electrical impulses of the brain thus detecting brainwave patterns during rest and thought processing. The combination of these two modalities is called fMRI with simultaneous EEG (fMRI-EEG), which has emerged as a new tool for experimental neuroscience assessments and has been applied clinically in many settings, most commonly in epilepsy cases. Recent advances in imaging has led to fMRI-EEG being utilized in behavioural studies which can help in giving an objective assessment of ambiguous cases and help in the assessment of response to treatment by providing a non-invasive biomarker of the disease processes. We aim to review the role and interpretation of fMRI-EEG in studies pertaining to psychiatric disorders and behavioral abnormalities.
Collapse
Affiliation(s)
- Nisha Syed Nasser
- Centre for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Buhari Ibrahim
- Centre for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Physiology, Faculty of Basic Health Sciences, Bauchi State University, Gadau, Nigeria
| | - Hamed Sharifat
- Centre for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aida Abdul Rashid
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Subapriya Suppiah
- Centre for Diagnostic Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Han X, Li H, Wang X, Zhu Y, Song T, Du L, Sun S, Guo R, Liu J, Shi S, Fu C, Gao W, Zhang L, Ma G. Altered Brain Fraction Amplitude of Low Frequency Fluctuation at Resting State in Patients With Early Left and Right Bell's Palsy: Do They Have Differences? Front Neurosci 2018; 12:797. [PMID: 30450029 PMCID: PMC6225791 DOI: 10.3389/fnins.2018.00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Purpose: Bell's palsy refers to acute idiopathic unilateral facial nerve palsy. It is a common disorder of the main motor pathway to the facial muscles. This study aimed to investigate the abnormal fraction amplitude of low frequency fluctuation (fALFF) of the brain in patients with early left and right Bell's palsy. Materials and Methods: Sixty-seven patients (left 33, right 34) and 37 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging (R-fMRI) examination. The fALFF values were measured from all subjects and were compared among the left palsy, right palsy, and control groups. Then, correlations between the Toronto Facial Grading System (TFGS) scores of the patients and the fALFF values of abnormal brain regions were analyzed. Results: Significant group differences in fALFF values among the three groups were observed mainly in the cerebral cortical, subcortical, and deep gray matter regions. Compared with the right Bell's palsy group, the left Bell's palsy group showed significantly decreased fALFF values in the left temporal pole of the superior temporal gyrus (TPOsup), right supramarginal, left and right middle cingulate cortex (MCC), left superior frontal gyrus (SFG), and left precentral gyrus (PreCG), and increased fALFF values were observed in the right SFG and PreCG. Furthermore, altered fALFF values correlated positively with the TFGS scores in the left superior TPO, bilateral MCC, and right PreCG, and correlated negatively with the TFGS scores in the right SFG of the left Bell's palsy group. Altered fALFF values correlated positively with the TFGS scores in the bilateral MCC and right PreCG and correlated negatively with the TFGS scores in the left superior TPO and SFG of the right Bell's palsy group. Conclusion: Regulatory mechanisms seem to differ between patients with left and right early Bell's palsy. The severity of the disease is associated with these functional alterations.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Haimei Li
- Department of Radiology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Xiaochun Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yijiang Zhu
- Department of Imaging, Anhui Provincial Hospital, Hefei, China
| | - Tianbin Song
- Department of Nuclear Medicine, Xuanwu Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Runcai Guo
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Sumin Shi
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Chao Fu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhang
- Department of Science and Education, Shangluo Central Hospital, Shangluo, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
17
|
Silva MA, See AP, Essayed WI, Golby AJ, Tie Y. Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 2017; 17:794-803. [PMID: 29270359 PMCID: PMC5735325 DOI: 10.1016/j.nicl.2017.12.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality. In this review, we discuss clinical fMRI's applications, limitations and potential solutions. These limitations depend on the following parameters: foundations of fMRI, physiologic effects of the disease, distinctions between clinical and research fMRI, and the design of the fMRI study. We also compare fMRI to other brain mapping modalities which should be considered as alternatives or adjuncts when appropriate, and discuss intraoperative use and validation of fMRI. These concepts direct the clinical application of fMRI in neurosurgical patients.
Collapse
Affiliation(s)
- Michael A Silva
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Alfred P See
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Walid I Essayed
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra J Golby
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yanmei Tie
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Valsalva-induced elevation of intracranial pressure selectively decouples deoxygenated hemoglobin concentration from neuronal activation and functional brain imaging capability. Neuroimage 2017; 162:151-161. [DOI: 10.1016/j.neuroimage.2017.08.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 11/19/2022] Open
|
19
|
Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR Oximetry of Changes in Intracerebral Oxygen Tension During Induced Thromboembolism. Cell Biochem Biophys 2017; 75:285-294. [PMID: 28434138 DOI: 10.1007/s12013-017-0798-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cerebral tissue oxygenation (oxygen tension, pO2) is a critical parameter that is closely linked to brain metabolism, function, and pathophysiology. In this work, we have used electron paramagnetic resonance oximetry with a deep-tissue multi-site oxygen-sensing probe, called implantable resonator, to monitor temporal changes in cerebral pO2 simultaneously at four sites in a rabbit model of ischemic stroke induced by embolic clot. The pO2 values in healthy brain were not significantly different among the four sites measured over a period of 4 weeks. During exposure to 15% O2 (hypoxia), a sudden and significant decrease in pO2 was observed in all four sites. On the other hand, brief exposure to breathing carbogen gas (95% O2 + 5% CO2) showed a significant increase in the cerebral pO2 from baseline value. During ischemic stroke, induced by embolic clot in the left brain, a significant decline in the pO2 of the left cortex (ischemic core) was observed without any change in the contralateral sites. While the pO2 in the non-infarct regions returned to baseline at 24-h post-stroke, pO2 in the infarct core was consistently lower compared to the baseline and other regions of the brain. The results demonstrated that electron paramagnetic resonance oximetry with the implantable resonator can repeatedly and simultaneously report temporal changes in cerebral pO2 at multiple sites. This oximetry approach can be used to develop interventions to rescue hypoxic/ischemic tissue by modulating cerebral pO2 during hypoxic and stroke injury.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Nadeem Khan
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Sangeeta Gohain
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Clifford J Eskey
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Harold M Swartz
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA.
| |
Collapse
|
20
|
Rath J, Wurnig M, Fischmeister F, Klinger N, Höllinger I, Geißler A, Aichhorn M, Foki T, Kronbichler M, Nickel J, Siedentopf C, Staffen W, Verius M, Golaszewski S, Koppelstaetter F, Auff E, Felber S, Seitz RJ, Beisteiner R. Between- and within-site variability of fMRI localizations. Hum Brain Mapp 2016; 37:2151-60. [PMID: 26955899 DOI: 10.1002/hbm.23162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 11/11/2022] Open
Abstract
This study provides first data about the spatial variability of fMRI sensorimotor localizations when investigating the same subjects at different fMRI sites. Results are comparable to a previous patient study. We found a median between-site variability of about 6 mm independent of task (motor or sensory) and experimental standardization (high or low). An intraclass correlation coefficient analysis using data quality measures indicated a major influence of the fMRI site on variability. In accordance with this, within-site localization variability was considerably lower (about 3 mm). We conclude that the fMRI site is a considerable confound for localization of brain activity. However, when performed by experienced clinical fMRI experts, brain pathology does not seem to have a relevant impact on the reliability of fMRI localizations. Hum Brain Mapp 37:2151-2160, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jakob Rath
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Moritz Wurnig
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Florian Fischmeister
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Nicolaus Klinger
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Ilse Höllinger
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Alexander Geißler
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Markus Aichhorn
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Thomas Foki
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler-Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Janpeter Nickel
- Department of Neurology, University Hospital Düsseldorf, Germany
| | | | - Wolfgang Staffen
- Department of Neurology, Christian-Doppler-Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Michael Verius
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Stefan Golaszewski
- Department of Neurology, Christian-Doppler-Clinic, Paracelsus Medical University, Salzburg, Austria
| | | | - Eduard Auff
- Department of Neurology, Medical University of Vienna, Austria
| | - Stephan Felber
- Institute for Diagnostic Radiology, Stiftungsklinikum Mittelrhein, Koblenz, Germany
| | - Rüdiger J Seitz
- Department of Neurology, University Hospital Düsseldorf, Germany.,Centre of Neurology and Neuropsychiatry, Heinrich-Heine-University Düsseldorf, LVR-Klinikum Düsseldorf, Germany
| | - Roland Beisteiner
- Department of Neurology and MR Center of Excellence, Medical University of Vienna, Austria
| |
Collapse
|
21
|
Tie Y, Rigolo L, Ovalioglu AO, Olubiyi O, Doolin KL, Mukundan S, Golby AJ. A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI. J Neuroimaging 2015; 25:710-720. [PMID: 25962953 PMCID: PMC4537682 DOI: 10.1111/jon.12251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/18/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. METHODS A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. RESULTS Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. CONCLUSIONS These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation.
Collapse
Affiliation(s)
- Yanmei Tie
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura Rigolo
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Aysegul Ozdemir Ovalioglu
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Neurosurgery Department, Haseki Education and Research Hospital, Istanbul, Turkey
| | - Olutayo Olubiyi
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly L. Doolin
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Srinivasan Mukundan
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra J. Golby
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Rosazza C, Aquino D, D’Incerti L, Cordella R, Andronache A, Zacà D, Bruzzone MG, Tringali G, Minati L. Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI. PLoS One 2014; 9:e98860. [PMID: 24914775 PMCID: PMC4051640 DOI: 10.1371/journal.pone.0098860] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
Resting state fMRI (rs-fMRI) has recently been considered as a possible complement or alternative to task-based fMRI (tb-fMRI) for presurgical mapping. However, evidence of its usefulness remains scant, because existing studies have investigated relatively small samples and focused primarily on qualitative evaluation. The aim of this study is to investigate the clinical usefulness of rs-fMRI in the context of presurgical mapping of motor functions, and in particular to determine the degree of correspondence with tb-fMRI which, while not a gold-standard, is commonly used in preoperative setting. A group of 13 patients with lesions close to the sensorimotor cortex underwent rs-fMRI and tb-fMRI to localize the hand, foot and mouth motor areas. We assessed quantitatively the degree of correspondence between multiple rs-fMRI analyses (independent-component and seed-based analyses) and tb-fMRI, with reference to sensitivity and specificity of rs-fMRI with respect to tb-fMRI, and centre-of-mass distances. Agreement with electro-cortical stimulation (ECS) was also investigated, and a traditional map thresholding approach based on agreement between two experienced operators was compared to an automatic threshold determination method. Rs-fMRI can localize the sensorimotor cortex successfully, providing anatomical specificity for hand, foot and mouth motor subregions, in particular with seed-based analyses. Agreement with tb-fMRI was only partial and rs-fMRI tended to provide larger patterns of correlated activity. With respect to the ECS data available, rs-fMRI and tb-fMRI performed comparably, even though the shortest distance to stimulation points was observed for the latter. Notably, the results of both were on the whole robust to thresholding procedure. Localization performed by rs-fMRI is not equivalent to tb-fMRI, hence rs-fMRI cannot be considered as an outright replacement for tb-fMRI. Nevertheless, since there is significant agreement between the two techniques, rs-fMRI can be considered with caution as a potential alternative to tb-fMRI when patients are unable to perform the task.
Collapse
Affiliation(s)
- Cristina Rosazza
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
- Scientific Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
- * E-mail:
| | - Domenico Aquino
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Ludovico D’Incerti
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Roberto Cordella
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Adrian Andronache
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Ludovico Minati
- Scientific Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
23
|
Cañizares S, Cherner M, Ellis RJ. HIV and aging: effects on the central nervous system. Semin Neurol 2014; 34:27-34. [PMID: 24715486 DOI: 10.1055/s-0034-1372340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.
Collapse
Affiliation(s)
- Silvia Cañizares
- Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, California
| | - Ronald J Ellis
- Department of Neurosciences, HIV Neurobehavioral Research Center, University of California, San Diego, California
| |
Collapse
|
24
|
van Heerden J, Desmond PM, Phal PM. Functional MRI in clinical practice: A pictorial essay. J Med Imaging Radiat Oncol 2014; 58:320-6. [DOI: 10.1111/1754-9485.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jolandi van Heerden
- Department of Radiology; The Royal Melbourne Hospital; The University of Melbourne; Melbourne Victoria Australia
| | - Patricia M Desmond
- Department of Radiology; The Royal Melbourne Hospital; The University of Melbourne; Melbourne Victoria Australia
| | - Pramit M Phal
- Department of Radiology; The Royal Melbourne Hospital; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
25
|
Camprodon JA, Stern TA. Selecting neuroimaging techniques: a review for the clinician. Prim Care Companion CNS Disord 2013; 15:12f01490. [PMID: 24392248 DOI: 10.4088/pcc.12f01490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 10/26/2022] Open
|