1
|
Gellée N, Legrand N, Jouve M, Devaux PJ, Dubuquoy L, Sobolewski C. Tristetraprolin Family Members and Processing Bodies: A Complex Regulatory Network Involved in Fatty Liver Disease, Viral Hepatitis and Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:348. [PMID: 39941720 PMCID: PMC11815756 DOI: 10.3390/cancers17030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic liver diseases, such as those encountered with obesity, chronic/abusive alcohol consumption or viral infections, represent not only major public health concerns with limited therapeutic options but also important risk factors for the onset of hepatocellular carcinoma (HCC). Deciphering the molecular traits underlying these disorders is of high interest for designing new and effective treatments. The tristetraprolin (TTP) family members are of particular importance given their ability to control the expression of a wide range of genes involved in metabolism, inflammation and carcinogenesis at the post-transcriptional level. This regulation can occur within small cytoplasmic granules, namely, processing bodies (P-bodies), where the mRNA degradation occurs. Increasing evidence indicates that TTP family members and P-bodies are involved in the development of chronic liver diseases and cancers. In this review, we discuss the role of this regulatory mechanism in metabolic-dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), hepatic viral infections and HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Cyril Sobolewski
- Univ Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (N.G.); (N.L.); (M.J.); (L.D.)
| |
Collapse
|
2
|
Gupta S, Parveen S. Potential role of microRNAs in personalized medicine against hepatitis: a futuristic approach. Arch Virol 2024; 169:33. [PMID: 38245876 DOI: 10.1007/s00705-023-05955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
MicroRNAs (miRNAs) have been the subject of extensive research for many years, primarily in the context of diseases such as cancer. However, our appreciation of their significance in viral infections, particularly in hepatitis, has increased due to the discovery of their association with both the host and the virus. Hepatitis is a major global health concern and can be caused by various viruses, including hepatitis A to E. This review highlights the key factors associated with miRNAs and their involvement in infections with various viruses that cause hepatitis. The review not only emphasizes the expression profiles of miRNAs in hepatitis but also puts a spotlight on their potential for diagnostics and therapeutic interventions. Ongoing extensive studies are propelling the therapeutic application of miRNAs, addressing both current limitations and potential strategies for the future of miRNAs in personalized medicine. Here, we discuss the potential of miRNAs to influence future medical research and an attempt to provide a thorough understanding of their diverse roles in hepatitis and beyond.
Collapse
Affiliation(s)
- Sonam Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
3
|
Lee EB, Sung PS, Kim JH, Park DJ, Hur W, Yoon SK. microRNA-99a Restricts Replication of Hepatitis C Virus by Targeting mTOR and de novo Lipogenesis. Viruses 2020; 12:v12070696. [PMID: 32605105 PMCID: PMC7411587 DOI: 10.3390/v12070696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the role of microRNA-99a (miR-99a) in hepatitis C virus (HCV) replication and lipogenesis in hepatocytes. Cell-culture-derived HCV (HCVcc) infection caused down-regulation of miR-99a in Huh-7 cells, and the relative levels of miR-99a were significantly lower in the sera of the HCV-infected patients than in those of healthy controls. Transfection of miR-99a-5p mimics resulted in a decrease in the intracellular and secreted HCV RNA levels. It also caused a decreased mammalian target of rapamycin (mTOR) protein level and phosphorylation of its downstream targets in HCV-replicating cells. Sterol regulatory element binding protein (SREBP)-1c expression and intracellular lipid accumulation decreased when either miR-99a-5p mimics or si-mTOR was transfected in oleic acid-treated Huh-7 cells. Overexpression of mTOR rescued HCV RNA replication and lipid droplet accumulation in miR-99a-5p mimics-transfected HCV replicon cells. Our data demonstrated that miR-99a ameliorates intracellular lipid accumulation by regulating mTOR/SREBP-1c and causes inefficient replication and packaging of intracellular HCV.
Collapse
Affiliation(s)
- Eun Byul Lee
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
| | - Dong Jun Park
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
| | - Wonhee Hur
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (E.B.L.); (P.S.S.); (J.-H.K.); (D.J.P.); (W.H.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2258-2073; Fax: +82-2-3481-4025
| |
Collapse
|
4
|
Khan N, Cheemadan S, Saxena H, Bammidi S, Jayandharan GR. MicroRNA-based recombinant AAV vector assembly improves efficiency of suicide gene transfer in a murine model of lymphoma. Cancer Med 2020; 9:3188-3201. [PMID: 32108448 PMCID: PMC7196056 DOI: 10.1002/cam4.2935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent success in clinical trials with recombinant Adeno-associated virus (AAV)-based gene therapy has redirected efforts in optimizing AAV assembly and production, to improve its potency. We reasoned that inclusion of a small RNA during vector assembly, which specifically alters the phosphorylation status of the packaging cells may be beneficial. We thus employed microRNAs (miR-431, miR-636) identified by their ability to bind AAV genome and also dysregulate Mitogen-activated protein kinase (MAPK) signaling during vector production, by a global transcriptome study in producer cells. A modified vector assembly protocol incorporating a plasmid encoding these microRNAs was developed. AAV2 vectors packaged in the presence of microRNA demonstrated an improved gene transfer potency by 3.7-fold, in vitro. Furthermore, AAV6 serotype vectors encoding an inducible caspase 9 suicide gene, packaged in the presence of miR-636, showed a significant tumor regression (~2.2-fold, P < .01) in a syngeneic murine model of T-cell lymphoma. Taken together, we have demonstrated a simple but effective microRNA-based approach to improve the assembly and potency of suicide gene therapy with AAV vectors.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sabna Cheemadan
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
| | - Himanshi Saxena
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sridhar Bammidi
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
- Department of HematologyChristian Medical CollegeVelloreTNIndia
| |
Collapse
|
5
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
6
|
POLYMORPHISM OF SMAD7 (RS4939827) AND EIF3H (RS16892766) GENES AS A CRITERIUM OF FIBROSIS PROGRESSION RATE IN PATIENTS WITH CHRONIC HEPATITIS С AND В. WORLD OF MEDICINE AND BIOLOGY 2020. [DOI: 10.26724/2079-8334-2020-4-74-7-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Amador-Cañizares Y, Bernier A, Wilson JA, Sagan SM. miR-122 does not impact recognition of the HCV genome by innate sensors of RNA but rather protects the 5' end from the cellular pyrophosphatases, DOM3Z and DUSP11. Nucleic Acids Res 2019; 46:5139-5158. [PMID: 29672716 PMCID: PMC6007490 DOI: 10.1093/nar/gky273] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) recruits two molecules of the liver-specific microRNA-122 (miR-122) to the 5′ end of its genome. This interaction promotes viral RNA accumulation, but the precise mechanism(s) remain incompletely understood. Previous studies suggest that miR-122 is able to protect the HCV genome from 5′ exonucleases (Xrn1/2), but this protection is not sufficient to account for the effect of miR-122 on HCV RNA accumulation. Thus, we investigated whether miR-122 was also able to protect the viral genome from innate sensors of RNA or cellular pyrophosphatases. We found that miR-122 does not play a protective role against recognition by PKR, RIG-I-like receptors, or IFITs 1 and 5. However, we found that knockdown of both the cellular pyrophosphatases, DOM3Z and DUSP11, was able to rescue viral RNA accumulation of subgenomic replicons in the absence of miR-122. Nevertheless, pyrophosphatase knockdown increased but did not restore viral RNA accumulation of full-length HCV RNA in miR-122 knockout cells, suggesting that miR-122 likely plays an additional role(s) in the HCV life cycle, beyond 5′ end protection. Overall, our results support a model in which miR-122 stabilizes the HCV genome by shielding its 5′ terminus from cellular pyrophosphatase activity and subsequent turnover by exonucleases (Xrn1/2).
Collapse
Affiliation(s)
| | - Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
| | - Joyce A Wilson
- Department of Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
8
|
|
9
|
Fournier C, Hoffmann TW, Morel V, Descamps V, Dubuisson J, Brochot E, Francois C, Duverlie G, Castelain S, Helle F. Claudin-1, miR-122 and apolipoprotein E transductions improve the permissivity of SNU-182, SNU-398 and SNU-449 hepatoma cells to hepatitis C virus. J Viral Hepat 2018; 25:63-71. [PMID: 28772350 DOI: 10.1111/jvh.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/11/2017] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) is a human hepatotropic virus, but many hepatoma cell lines are not permissive to this virus. In a previous study, we observed that SNU-182, SNU-398 and SNU-449 hepatoma cell lines were nonpermissive to HCV. To understand the nonpermissivity, we evaluated the ability of each cell line to support the different steps of HCV life cycle (entry, replication and production of infectious particles). Using retroviral pseudoparticles pseudotyped with HCV envelope proteins and recombinant HCV produced in cell culture, we observed that low level or absence of claudin-1 (CLDN1) expression limited the viral entry process in SNU-182 and SNU-398 cells, respectively. Our results also showed that supplementation of the three cell lines with miR-122 partly restored the replication of a JFH1 HCV replicon. Finally, we observed that expression of apolipoprotein E (ApoE) was very low or undetectable in the three cell lines and that its ectopic expression permits the production of infectious viral particles in SNU-182 and SNU-398 cells but not in SNU-449 cells. Nevertheless, the supplementation of SNU-182, SNU-398 and SNU-449 cells with CLDN1, miR-122 and ApoE was not sufficient to render these cells as permissive as HuH-7 cells. Thus, these cell lines could serve as cell culture models for functional studies on the role of CLDN1, miR-122 and ApoE in HCV life cycle but also for the identification of new restriction and/or dependency host factors essential for HCV infection.
Collapse
Affiliation(s)
- C Fournier
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - T W Hoffmann
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - V Morel
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - V Descamps
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - J Dubuisson
- U1019 - UMR 8204, CIIL - Centre d'Infection et d'Immunité de Lille, CNRS, Institut Pasteur de Lille, Inserm, CHU Lille, Université Lille, Lille, France
| | - E Brochot
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - C Francois
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - G Duverlie
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - S Castelain
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| | - F Helle
- EA4294, Laboratoire de Virologie, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
10
|
Shao D, Wang C, Sun Y, Cui L. Effects of oral implants with miR‑122‑modified cell sheets on rat bone marrow mesenchymal stem cells. Mol Med Rep 2017; 17:1537-1544. [PMID: 29257226 PMCID: PMC5780093 DOI: 10.3892/mmr.2017.8094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to regulate the transformation of bone marrow mesenchymal stem cells (BMMSCs) to osteoblasts to promote bone formation and osseointegration surrounding oral implants. BMMSCs were cultured using the whole bone marrow adherence method. Cell surface markers were detected by flow cytometry, and multi‑lineage differentiation potential was detected by osteogenic and adipogenic tests. miR‑122‑modified cell sheets were prepared by non‑viral transfection and complexed with micro‑arc titanium oxide implants to construct a gene‑modified tissue‑engineered implant, with its surface morphology observed by scanning electron microscopy (SEM). In vitro osteogenic activity of the implant was determined by alkaline phosphatase (ALP), Sirius Red, alizarin red staining, polymerase chain reaction and western blot analysis. The BMMSCs were spindle‑ or triangular‑shaped. Surface markers, cluster of differentiation 29 (CD29), CD90 and CD105 were positively expressed, whereas blood cell markers CD34, CD45 and CD31 were negatively expressed. Osteogenic staining exhibited deposition of calcified nodules, while adipogenic staining demonstrated the formation of lipid droplets. miR‑122 modification significantly enhanced the in vitro osteogenic activity of the sheets. On day 3 of osteogenic induction, runt-related transcription factor 2, osterix, osteocalcin, collagen I, ALP and bone morphogenetic protein 2 expression levels of the experimental group were 2.0, 3.1, 4.6, 3.2, 10.5 and 4.5 times those of the blank control group, respectively. SEM imaging of the modified sheet demonstrated close adhesion and fitting between abundant cellular and extracellular matrices, and the porous surface of the implant. In vitro osteogenesis of the complex was promoted and accelerated. Thus, miR‑122 effectively promoted osteogenic differentiation of the BMMSC sheet. Therefore, it is feasible to construct gene‑modified tissue‑engineered implants by complexing miR‑122‑modified sheets with micro‑arc titanium oxide implants.
Collapse
Affiliation(s)
- Dan Shao
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Chunfang Wang
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Yaping Sun
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| | - Lei Cui
- Department of Stomatology, The First People's Hospital of Qingdao Economic and Technological Development Zone, Qingdao, Shandong 266555, P.R. China
| |
Collapse
|
11
|
Russo MW, Steuerwald N, Norton HJ, Anderson WE, Foureau D, Chalasani N, Fontana RJ, Watkins PB, Serrano J, Bonkovsky HL. Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance. Liver Int 2017; 37:757-764. [PMID: 27860186 PMCID: PMC5502673 DOI: 10.1111/liv.13312] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Drug induced liver injury (DILI) is challenging because of the lack of biomarkers to predict mortality. Our aim was to describe miRNA changes in sera of subjects with acute idiosyncratic DILI and determine if levels of miRNAs were associated with 6 month mortality. METHODS Clinical data and sera were collected from subjects enrolled in the Drug Induced Liver Injury Network prospective study. miRNAs were isolated from serum obtained from 78 subjects within 2 weeks of acute DILI and followed up for 6 months or longer. miRNAs were compared to 40 normal controls and 6 month survivors vs non-survivors. RESULTS The mean age of the DILI cohort was 48 years, and 55% were female. Eleven (14.1%) subjects died, 10 within 6 months of DILI onset, 5 (45%) liver related. Lower levels of miRNAs-122, -4463 and -4270 were associated with death within 6 months (P<.05). None of the subjects with miRNA-122 greater than the median value died within 6 months for a sensitivity of 100% and specificity of 57%. In subjects with a serum albumin <2.8 g/dL and miR-122<7.89 RFU the sensitivity, specificity, positive and negative predictive values for death within 6 months were 100%, 57%, 38% and 100% respectively. CONCLUSIONS Serum miRNA-122 combined with albumin accurately identified subjects who died within 6 months of drug induced liver injury. If confirmed prospectively, miRNA-122 and albumin may be useful in identifying patients at high risk for mortality or liver transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B Watkins
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | |
Collapse
|
12
|
Ganesan M, Natarajan SK, Zhang J, Mott JL, Poluektova LI, McVicker BL, Kharbanda KK, Tuma DJ, Osna NA. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde. Am J Physiol Gastrointest Liver Physiol 2016; 310:G930-G940. [PMID: 27056722 PMCID: PMC6842882 DOI: 10.1152/ajpgi.00021.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 02/08/2023]
Abstract
Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sathish Kumar Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Benita L McVicker
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
13
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
14
|
Abstract
During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.
Collapse
|
15
|
The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1652417. [PMID: 27073801 PMCID: PMC4814634 DOI: 10.1155/2016/1652417] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/05/2023]
Abstract
MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed.
Collapse
|
16
|
van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA, Reesink HW. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 2016; 43:102-13. [PMID: 26503793 DOI: 10.1111/apt.13432] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/29/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND MicroRNA-122 (miR-122) is an important host factor for hepatitis C virus replication. Administration of miravirsen, an anti-miR-122 oligonucleotide, resulted in a dose dependent and prolonged decrease in HCV RNA levels in chronic hepatitis C patients. AIM To assess the plasma level of various miRNAs in patients dosed with miravirsen. METHODS We included 16 of 36 chronic hepatitis C patients who received five injections of either 3 mg/kg (n = 4), 5 mg/kg (n = 4), 7 mg/kg (n = 4) miravirsen or placebo (n = 4) over a 4-week period in a double-blind, randomised phase 2a study. Plasma levels of 179 miRNAs were determined by qPCR and compared between patients dosed with miravirsen or placebo. RESULTS Median plasma miR-122 level at baseline in patients receiving miravirsen was 3.9 × 10(3) compared to 1.3 × 10(4) copies/4 μL in placebo-dosed patients (P = 0.68). At week 1, 4, 6 and 10/12, patients dosed with miravirsen had respectively a median 72-fold, 174-fold, 1109-fold and 552-fold lower expression of miR-122 than at baseline (P = 0.001, as compared to patients receiving placebo). At week 4 of dosing, miRNA-profiling demonstrated a significant lower expression of miR-210 and miR-532-5p compared to baseline (3.0 and 4.7-fold lower respectively). However, subsequent longitudinal analysis showed no significant differences in miR-210 and miR-532-5p plasma levels throughout the study period. CONCLUSIONS We demonstrated a substantial and prolonged decrease in plasma miR-122 levels in patients dosed with miravirsen. Plasma levels of other miRNAs were not significantly affected by antagonising miR-122.
Collapse
Affiliation(s)
- M H van der Ree
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - A J van der Meer
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A C van Nuenen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - J de Bruijne
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - S Ottosen
- Santaris Pharma A/S, Hørsholm, Denmark
| | - H L Janssen
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.,Liver Clinic, Toronto Western & General Hospital, University Health Network, Toronto, ON, Canada
| | - N A Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - H W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|