1
|
Liao D, Zhang Y, Li S, Tang H, Bai X. miRNAs in neurodegenerative diseases: from target screening to precision therapy. Neurol Sci 2025; 46:2393-2399. [PMID: 39969752 DOI: 10.1007/s10072-025-08051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
miRNAs are critical for different disease development processes, including cell growth, signaling, apoptosis, cancer and neurodegenerative diseases. It has been shown that altered miRNA levels are associated with reactive oxygen species (ROS) formation and mitochondrial dysfunction. While mitochondrial dysfunction and ROS formation occur in many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, amyotrophic lateral sclerosis, miRNAs have the potential to be diagnostic biomarkers and therapeutic targets with a high degree of specificity, which is highly relevant in neurodegenerative pathologies.This paper gives a general summary of the current expression of miRNAs in neurodegenerative diseases, including miRNAs up-regulated or down-regulated in a variety of diseases, as well as the associated factors of influence. miRNAs are more like a double-edged sword, their multi-targeted role has brought light to many diseases for which there are currently no clear therapeutic options, but at the same time, their low specificity and possible side effects on the whole body should not be ignored, therefore However, at the same time, its low specificity and possible side effects on the whole body should not be ignored, therefore, more attention should be paid to the development of miRNA therapy in terms of its high efficiency, the use of carriers, and the clarification of side effects.
Collapse
Affiliation(s)
- Dongyi Liao
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yujie Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2025; 480:2689-2706. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
3
|
Martino MTD, Tagliaferri P, Tassone P. MicroRNA in cancer therapy: breakthroughs and challenges in early clinical applications. J Exp Clin Cancer Res 2025; 44:126. [PMID: 40259326 PMCID: PMC12010629 DOI: 10.1186/s13046-025-03391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as pivotal regulators in cancer biology, influencing tumorigenesis, progression, and resistance to therapy. Their ability to modulate multiple oncogenic and tumor-suppressive pathways positions them as promising therapeutic tools or targets. This review examines the dual role of miRNAs in solid and hematological malignancies, starting from their dysregulation in various cancer types. Therapeutic approaches, including miRNA replacement and inhibition strategies, are discussed alongside innovative delivery systems such as lipid nanoparticles and exosomes. Despite their transformative potential, challenges persist, including off-target effects, immune activation, and delivery inefficiencies. Recent clinical trials demonstrate both progress and hurdles, underscoring the need for advanced strategies to optimize specificity and minimize toxicity. This review provides an updated comprehensive overview of the current landscape of miRNA-based therapies under early clinical investigation and explores future directions for integrating these approaches into precision oncology.
Collapse
Affiliation(s)
- Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
4
|
Luo S, Jiang H, Li Q, Yang S, Yu X, Xu X, Xie Q, Ke X, Zheng Q. The Intra-Articular Delivery of a Low-Dose Adeno-Associated Virus-IL-1 Receptor Antagonist Vector Alleviates the Progress of Arthritis in an Osteoarthritis Rat Model. Pharmaceutics 2024; 16:1518. [PMID: 39771498 PMCID: PMC11728506 DOI: 10.3390/pharmaceutics16121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Interleukin-1 (IL-1) is a pivotal mediator in the pathological progression of osteoarthritis (OA), playing a central role in disease progression. However, the rapid clearance of IL-1 receptor antagonist (IL-1Ra) from the joints may hinder the efficacy of intra-articular IL-1Ra injections in reducing OA-associated pain or cartilage degradation. Methods: Sustaining sufficient levels of IL-1Ra within the joints via adeno-associated virus (AAV)-mediated gene therapy presents a promising therapeutic strategy for OA. In this study, we constructed an IL-1Ra expression cassette employing intron insertion in the coding sequence (CDS) region to enhance protein expression levels. Furthermore, we incorporated precisely targeted liver-specific microRNA (miRNA) sequences to specifically downregulate transgene expression within hepatic tissues, thereby ensuring more targeted and controlled regulation of gene expression. Results: A rat model of OA was employed to compare the efficacy of AAV5 and AAV9 for IL-1Ra delivery at both high and low doses. It was observed that low-dose, but not high-dose, AAV9-IL-1Ra resulted in a significant reduction in joint swelling, accompanied by a decrease in the diameter of the affected area and the preservation of biomarkers associated with trabecular bone integrity. Conclusions: These results highlight the great potential of AAV9-IL-1Ra in osteoarthritis therapy, with the promise of achieving long-term improvement through a single intra-articular injection.
Collapse
Affiliation(s)
- Shuang Luo
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Shiping Yang
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xuemei Yu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Xiongliang Xu
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
| | - Qing Xie
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
| | - Xiao Ke
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co., Ltd., Chengdu 610036, China; (S.L.); (H.J.); (Q.L.); (S.Y.); (X.Y.); (X.X.); (Q.X.)
- Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu 610037, China
- Chengdu Kanghong Pharmaceuticals Group Co., Ltd., Chengdu 610037, China
| |
Collapse
|
5
|
Hu X, Meister R, Tode J, Framme C, Fuchs H. Long-term in vitro monitoring of AAV-transduction efficiencies in real-time with Hoechst 33342. PLoS One 2024; 19:e0298173. [PMID: 38427668 PMCID: PMC10906819 DOI: 10.1371/journal.pone.0298173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 03/03/2024] Open
Abstract
Adeno-associated viral transduction allows the introduction of nucleic fragments into cells and is widely used to modulate gene expressions in vitro and in vivo. It enables the study of genetic functions and disease mechanisms and, more recently, serves as a tool for gene repair. To achieve optimal transduction performance for a given cell type, selecting an appropriate serotype and the number of virus particles per cell, also known as the multiplicity of infection, is critical. Fluorescent proteins are one of the common reporter genes to visualize successfully transduced cells and assess transduction efficiencies. Traditional methods of measuring fluorescence-positive cells are endpoint analysis by flow cytometry or manual counting with a fluorescence microscope. However, the flow cytometry analysis does not allow further measurement in a test run, and manual counting by microscopy is time-consuming. Here, we present a method that repeatedly evaluates transduction efficiencies by adding the DNA-stain Hoechst 33342 during the transduction process combined with a microscope or live-cell imager and microplate image analysis software. The method achieves fast, high-throughput, reproducible, and real-time post-transduction analysis and allows for optimizing transduction parameters and screening for a proper approach.
Collapse
Affiliation(s)
- Xiaonan Hu
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Roland Meister
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Jan Tode
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Heiko Fuchs
- Institute of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Xiao H, Wu Z, Jiang T, Zhu J, Zhou S, Xie X, Wang H, Chen L. Inhibition of miR-6215 rescued low subchondral bone mass caused by maternal exposure to dexamethasone in female offspring rats. Biochem Pharmacol 2023; 215:115722. [PMID: 37524209 DOI: 10.1016/j.bcp.2023.115722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Osteoporotic osteoarthritis is primarily associated with low subchondral bone mass. However, the mechanisms and therapeutic targets of osteoporotic osteoarthritis caused by prenatal dexamethasone exposure (PDE) in offspring remain unclear. In this study, pregnant Wistar rats were injected with dexamethasone to obtain bone tissue from fetal and postnatal rat offspring for analysis. Bone marrow mesenchymal stem cells (BMSCs) were isolated in vitro to elucidate the underlying molecular mechanisms. We determined in vivo that PDE reduced subchondral bone mass in adult female rat offspring, which originated from dysplasia of the subchondral bone. PDE led to a continuous increase in miR-6215 expression, accompanied by a decrease in FERM domain-containing protein 6 (FRMD6) expression. In vitro, dexamethasone upregulated miR-6215 expression through the glucocorticoid receptor, thereby inhibiting FRMD6 expression, promoting the translocation of yes-associated protein 1 (YAP1) into the nucleus of BMSCs, and downregulating downstream osteogenic marker genes. Finally, the rAAV-miR-6215 inhibitor rescued the low subchondral bone mass and osteoarthritis susceptibility caused by PDE in rat offspring. In conclusion, increased expression of miR-6215 mediates low subchondral bone mass caused by PDE through FRMD6/YAP1 signaling. Therefore, miR-6215 is a promising therapeutic target for PDE-induced low subchondral bone mass in offspring.
Collapse
Affiliation(s)
- Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China.
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Jiayong Zhu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Siqi Zhou
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Xingkui Xie
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
7
|
Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB, Khatri DK. Integration of miRNA's Theranostic Potential with Nanotechnology: Promises and Challenges for Parkinson's Disease Therapeutics. Mech Ageing Dev 2023; 211:111800. [PMID: 36958539 DOI: 10.1016/j.mad.2023.111800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Despite the wide research going on in Parkinson's disease (PD), the burden of PD still remains high and continues to increase. The current drugs available for the treatment of PD are only aimed at symptomatic control. Hence, research is mainly focused on identifying the novel therapeutic targets that can be effectively targeted in order to slow down or culminate the disease progression. Recently the role of microRNAs (miRNAs) in the regulation of various pathological mechanisms of PD has been thoroughly explored and many of them were found to be dysregulated in the biological samples of PD patients. These miRNAs can be used as diagnostic markers and novel therapeutic options to manage PD. The delivery of miRNAs to the target site in brain is a challenging job owing to their nature of degradability by endonucleases as well as poor blood brain barrier (BBB) permeability. Nanoparticles appear to be the best solution to effectively encase the miRNA in their core as well as cross the BBB to deliver them into brain. Functionalisation of these nanoparticles further enhances the site-specific delivery.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Naitik Jain
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Paras Famta
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Saurabh Srivastava
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| |
Collapse
|
8
|
Schaible P, Bethge W, Lengerke C, Haraszti RA. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Res 2023; 83:354-362. [PMID: 36512627 PMCID: PMC7614194 DOI: 10.1158/0008-5472.can-22-2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have recently emerged as potent tools in the fight against cancer, with promising therapeutic efficacy against hematological malignancies. However, several limitations hamper their widespread clinical use, including availability of target antigen, severe toxic effects, primary and secondary resistance, heterogeneous quality of autologous T cells, variable persistence, and low activity against solid tumors. Development of allogeneic off-the-shelf CAR T cells could help address some of these limitations but is impeded by alloimmunity with either rejection and limited expansion of allo-CAR T cells or CAR T cells versus host reactions. RNA therapeutics, such as small interfering RNAs, microRNAs, and antisense oligonucleotides, are able to silence transcripts in a sequence-specific and proliferation-sensitive way, which may offer a way to overcome some of the challenges facing CAR T-cell development and clinical utility. Here, we review how different RNA therapeutics or a combination of RNA therapeutics and genetic engineering could be harnessed to improve the safety and efficacy of autologous and allogeneic CAR T-cell therapy.
Collapse
Affiliation(s)
- Philipp Schaible
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Doroszkiewicz J, Groblewska M, Mroczko B. Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094610. [PMID: 35563001 PMCID: PMC9100918 DOI: 10.3390/ijms23094610] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
The degeneration and dysfunction of neurons are key features of neurodegenerative diseases (NDs). Currently, one of the main challenges facing researchers and clinicians is the ability to obtain reliable diagnostic tools that will allow for the diagnosis of NDs as early as possible and the detection of neuronal dysfunction, preferably in the presymptomatic stage. Additionally, better tools for assessing disease progression in this group of disorders are also being sought. The ideal biomarker must have high sensitivity and specificity, be easy to measure, give reproducible results, and reflect the disease progression. Molecular biomarkers include miRNAs and extracellular microvesicles known as exosomes. They may be measured in two extracellular fluids of the highest importance in NDs, i.e., cerebrospinal fluid (CSF) and blood. The aim of the current review is to summarize the pathophysiology of the four most frequent NDs—i.e., Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)—as well as current progress in the research into miRNAs as biomarkers in these major neurodegenerative diseases. In addition, we discuss the possibility of using miRNA-based therapies in the treatment of neurodegenerative diseases, and present the limitations of this type of therapy.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-686-51-68
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
11
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
12
|
Liang Y, Wang L. Inflamma-MicroRNAs in Alzheimer's Disease: From Disease Pathogenesis to Therapeutic Potentials. Front Cell Neurosci 2021; 15:785433. [PMID: 34776873 PMCID: PMC8581643 DOI: 10.3389/fncel.2021.785433] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/16/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of senile dementia. Although AD research has made important breakthroughs, the pathogenesis of this disease remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a class of endogenous short sequence non-coding RNAs that indirectly inhibit translation or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs, including miR-126 and miR-132, show a progressive link to the neuroinflammatory signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to AD progression, similar to inflammation, and therefore may become potential diagnostic biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic targets for AD treatment. This review provides insights into the role of inflamma-miRNAs in AD, as well as an overview of general inflamma-miRNA biology, their implications in pathophysiology, and their potential roles as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Liang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Yan H, Wang H, Zhu X, Huang J, Li Y, Zhou K, Hua Y, Yan F, Wang DZ, Luo Y. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:406-417. [PMID: 33473326 PMCID: PMC7787996 DOI: 10.1016/j.omtn.2020.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are important regulators in the process of cardiac hypertrophy and heart failure. Previous studies have shown that miR-199a is upregulated in pressure-overload cardiac hypertrophy and that inhibition of miR-199a attenuates cardiac hypertrophy in vitro. However, the therapeutic role of anti-miR-199a treatment in the cardiac hypertrophy in vivo model is less known. Here, we show an efficient and useful method to treat mouse cardiac hypertrophy and restore cardiac function through injection of adeno-associated virus (AAV)-mediated anti-miR-199a tough decoys (TuDs). RNA-seq transcriptome analysis indicated that genes related to cytoplasmic translation and mitochondrial respiratory chain complex assembly were upregulated in anti-miR-199a-treated recovered hearts. We further validated that PGC-1α is the direct target of miR-199a involved in the therapeutic effect and the regulation of the PGC-1α/ERRα axis and that the downstream pathway of mitochondrial fatty acid oxidation and oxidative phosphorylation constitute the underlying mechanism of the restored mitochondrial structure and function in our anti-miR-199a-treated mice. Our study highlights the important regulatory role of miR-199a in cardiac hypertrophy and the value of the AAV-mediated miRNA delivery system.
Collapse
Affiliation(s)
- Hualin Yan
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxia Zhu
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Yan
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yan Luo
- Department of Medical Ultrasound, Laboratory of Ultrasound Imaging Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Collins L, Binder P, Chen H, Wang X. Regulation of Long Non-coding RNAs and MicroRNAs in Heart Disease: Insight Into Mechanisms and Therapeutic Approaches. Front Physiol 2020; 11:798. [PMID: 32754048 PMCID: PMC7365882 DOI: 10.3389/fphys.2020.00798] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide and there is an increasing need to identify new therapeutic targets that could be used to prevent or treat these diseases. Due to recent scientific advances, non-coding RNAs are widely accepted as important regulators of cellular processes, and the identification of an axis of interaction between long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) has provided another platform through which cardiovascular disease could be targeted therapeutically. Increasing evidence has detailed the importance of these non-coding RNAs, both individually and in an axis of regulation, in the processes and diseases involving the heart. However, further investigation into the consequences of targeting this mechanism, as well as refinement of how the system is targeted, are required before a treatment can be provided in clinic. This level of genomic regulation provides an exciting potential novel therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Lucy Collins
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Pablo Binder
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Bharambe HS, Joshi A, Yogi K, Kazi S, Shirsat NV. Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma. Acta Neuropathol Commun 2020; 8:70. [PMID: 32410663 PMCID: PMC7227220 DOI: 10.1186/s40478-020-00942-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma, a highly malignant pediatric brain tumor, consists of four molecular subgroups, namely WNT, SHH, Group 3, and Group 4. The expression of miR-193a, a WNT subgroup-specific microRNA, was found to be induced by MYC, an oncogenic target of the canonical WNT signaling. MiR-193a is not expressed in Group 3 medulloblastomas, despite MYC expression, as a result of promoter hypermethylation. Restoration of miR-193a expression in the MYC amplified Group 3 medulloblastoma cells resulted in inhibition of growth, tumorigenicity, and an increase in radiation sensitivity. MAX, STMN1, and DCAF7 were identified as novel targets of miR-193a. MiR-193a mediated downregulation of MAX could suppress MYC activity since it is an obligate hetero-dimerization partner of MYC. MYC induced expression of miR-193a, therefore, seems to act as a feedback inhibitor of MYC signaling. The expression of miR-193a resulted in widespread repression of gene expression that included not only several cell cycle regulators, WNT, NOTCH signaling genes, and those encoding DNA replication machinery, but also several chromatin modifiers like SWI/SNF family genes and histone-encoding genes. MiR-193a expression brought about a reduction in the global levels of H3K4me3, H3K27ac, the histone marks of active chromatin, and an increase in the levels of H3K27me3, a repressive chromatin mark. In cancer cells having high MYC expression, MYC brings about transcriptional amplification of all active genes apart from the induction of its target genes. MiR-193a, on the other hand, brought about global repression of gene expression. Therefore, miR-193a has therapeutic potential in the treatment of not only Group 3 medulloblastomas but possibly other MYC overexpressing aggressive cancers as well.
Collapse
|
16
|
Ruiz-Velasco A, Zi M, Hille SS, Azam T, Kaur N, Jiang J, Nguyen B, Sekeres K, Binder P, Collins L, Pu F, Xiao H, Guan K, Frey N, Cartwright EJ, Müller OJ, Wang X, Liu W. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. eLife 2020; 9:54298. [PMID: 32223896 PMCID: PMC7124275 DOI: 10.7554/elife.54298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023] Open
Abstract
Myocardial insulin resistance contributes to heart failure in response to pathological stresses, therefore, a therapeutic strategy to maintain cardiac insulin pathways requires further investigation. We demonstrated that insulin receptor substrate 1 (IRS1) was reduced in failing mouse hearts post-myocardial infarction (MI) and failing human hearts. The mice manifesting severe cardiac dysfunction post-MI displayed elevated mir128-3p in the myocardium. Ischemia-upregulated mir128-3p promoted Irs1 degradation. Using rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes, we elucidated that mitogen-activated protein kinase 7 (MAPK7, also known as ERK5)-mediated CCAAT/enhancer-binding protein beta (CEBPβ) transcriptionally represses mir128-3p under hypoxia. Therapeutically, functional studies demonstrated gene therapy-delivered cardiac-specific MAPK7 restoration or overexpression of CEBPβ impeded cardiac injury after MI, at least partly due to normalization of mir128-3p. Furthermore, inhibition of mir128-3p preserved Irs1 and ameliorated cardiac dysfunction post-MI. In conclusion, we reveal that targeting mir128-3p mitigates myocardial insulin resistance, thereafter slowing down the progression of heart failure post-ischemia.
Collapse
Affiliation(s)
- Andrea Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Min Zi
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Susanne S Hille
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Tayyiba Azam
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Namrita Kaur
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Juwei Jiang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Binh Nguyen
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Pablo Binder
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Lucy Collins
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Fay Pu
- Edinburgh University Medical SchoolEdinburghUnited Kingdom
| | - Han Xiao
- Institute of Vascular Medicine, Peking UniversityBeijingChina
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Norbert Frey
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Oliver J Müller
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| |
Collapse
|
17
|
Dubois-Camacho K, Diaz-Jimenez D, De la Fuente M, Quera R, Simian D, Martínez M, Landskron G, Olivares-Morales M, Cidlowski JA, Xu X, Gao G, Xie J, Chnaiderman J, Soto-Rifo R, González MJ, Calixto A, Hermoso MA. Inhibition of miR-378a-3p by Inflammation Enhances IL-33 Levels: A Novel Mechanism of Alarmin Modulation in Ulcerative Colitis. Front Immunol 2019; 10:2449. [PMID: 31824476 PMCID: PMC6879552 DOI: 10.3389/fimmu.2019.02449] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by mucosa damage associated with an uncontrolled inflammatory response. This immunological impairment leads to altered inflammatory mediators such as IL-33, which is shown to increase in the mucosa of active UC (aUC) patients. MicroRNAs present a distorted feature in inflamed colonic mucosa and are potential IL-33 regulating candidates in UC. Therefore, we studied the microRNA and mRNA profiles in inflamed colonic samples of UC patients, evaluating the effect of a microRNA (selected by in silico analysis and its expression in UC patients), on IL-33 under inflammatory conditions. We found that inflamed mucosa (n = 8) showed increased expression of 40 microRNAs and 2,120 mRNAs, while 49 microRNAs and 1,734 mRNAs were decreased, as determined by microarrays. In particular, IL-33 mRNA showed a 3.8-fold increase and eight members of a microRNA family (miR-378), which targets IL-33 mRNA in the 3'UTR, were decreased (-3.9 to -3.0 times). We selected three members of the miR-378 family (miR-378a-3p, miR-422a, and miR-378c) according to background information and interaction energy analysis, for further correlation analyses with IL-33 expression through qPCR and ELISA, respectively. We determined that aUC (n = 24) showed high IL-33 levels, and decreased expression of miR-378a-3p and miR-422a compared to inactive UC (n = 10) and controls (n = 6). Moreover, both microRNAs were inversely correlated with IL-33 expression, while miR-378c does not show a significant difference. To evaluate the effect of TNFα on the studied microRNAs, aUC patients with anti-TNF therapy were compared to aUC receiving other treatments. The levels of miR-378a-3p and miR-378c were higher in aUC patients with anti-TNF. Based on these findings, we selected miR-378a-3p to exploring the molecular mechanism involved by in vitro assays, showing that over-expression of miR-378a-3p decreased the levels of an IL-33 target sequence β-gal-reporter gene in HEK293 cells. Stable miR-378a-3p over-expression/inhibition inversely modulated IL-33 content and altered viability of HT-29 cells. Additionally, in an inflammatory context, TNFα decreased miR-378a-3p levels in HT-29 cells enhancing IL-33 expression. Together, our results propose a regulatory mechanism of IL-33 expression exerted by miR-378a-3p in an inflammatory environment, contributing to the understanding of UC pathogenesis.
Collapse
Affiliation(s)
- Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Diaz-Jimenez
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Marjorie De la Fuente
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Disease Program, Gastroenterology Department, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martínez
- Research Sub-direction, Academic Direction, Clínica Las Condes, Santiago, Chile
| | - Glauben Landskron
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - John A. Cidlowski
- Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Durham, NC, United States
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonás Chnaiderman
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Interdisciplinary Center of Neuroscience of Valparaíso (CINV), Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela A. Hermoso
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Sun IO, Lerman LO. Urinary microRNA in kidney disease: utility and roles. Am J Physiol Renal Physiol 2019; 316:F785-F793. [PMID: 30759023 PMCID: PMC6580242 DOI: 10.1152/ajprenal.00368.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding single-stranded RNA oligonucleotides that modulate physiological and pathological processes by modulating target gene expression. Many miRNAs display tissue-specific expression patterns, the dysregulation of which has been associated with various disease states, including kidney disease. Mounting evidence implicates miRNAs in various biological processes, such as cell proliferation and differentiation and cancer. Because miRNAs are relatively stable in tissue and biological fluids, particularly when carried by extracellular vesicles, changes in their levels may reflect the development of human disease. Urinary miRNAs originate from primary kidney and urinary tract cells, cells infiltrating the renal tissue and shed in the urine, or the systemic circulation. Although their validity as biomarkers for kidney disease has not been fully established, studies have been applying analysis of miRNAs in the urine in an attempt to detect and monitor acute and chronic renal diseases. Because appreciation of the significance of miRNAs in the renal field is on the rise, an understanding of miRNA pathways that regulate renal physiology and pathophysiology is becoming critically important. This review aims to summarize new data obtained in this field of research. It is hoped that new developments in the use of miRNAs as biomarkers and/or therapy will help manage and contain kidney disease in affected subjects.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
19
|
Bernardo BC, Gregorevic P, Ritchie RH, McMullen JR. Generation of MicroRNA-34 Sponges and Tough Decoys for the Heart: Developments and Challenges. Front Pharmacol 2018; 9:1090. [PMID: 30298011 PMCID: PMC6160554 DOI: 10.3389/fphar.2018.01090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a debilitating and deadly chronic disease, with almost 50% of patients with HF dying within 5 years of diagnosis. With limited effective therapies to treat or cure HF, new therapies are greatly needed. microRNAs (miRNAs) are small non-coding RNA molecules that are powerful regulators of gene expression and play a key role in almost every biological process. Disruptions in miRNA gene expression has been functionally linked to numerous diseases, including cardiovascular disease. Molecular tools for manipulating miRNA activity have been developed, and there is evidence from preclinical studies demonstrating the potential of miRNAs to be therapeutic targets for cardiovascular disease. For clinical application, miRNA sponges and tough decoys have been developed for more stable suppression and targeted delivery of the miRNA of choice. The aim of this study was to generate miRNA sponges and tough decoys to target miR-34 in the mouse heart. We present data to show that using both approaches we were unable to get significant knockdown of miR-34 or regulate miR-34 target genes in the heart in vivo. We also review recent applications of this method in the heart and discuss further considerations for optimisation in construct design and testing, and the obstacles to be overcome before they enter the clinic.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia.,Department of Medicine, Monash University, Clayton, VIC, Australia.,Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
21
|
MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond) 2017; 131:1923-1940. [PMID: 28705953 DOI: 10.1042/cs20170039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic 'antagomiRs' to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.
Collapse
|
22
|
Li M, Guan H. Noncoding RNAs Regulating NF-κB Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 927:317-36. [PMID: 27376741 DOI: 10.1007/978-981-10-1498-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As transcription factors that regulate expression of a variety of genes essential for diverse physiological and pathological processes, nuclear factor kappa B (NF-κB) family molecules play important roles in the development and progression of malignant tumor, and constitutive activation of NF-κB has been evidenced in various types of tumor tissues. Underlying its pathologic role, deregulated expression and/or transactivating activity of NF-κB usually involves multiple layers of molecular mechanisms. Noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are known to modulate expression and biological functions of regulatory proteins in a variety of cancer contexts. In this chapter, the regulatory role of miRNAs and lncRNAs in NF-κB signaling in malignant diseases will be discussed.
Collapse
Affiliation(s)
- Mengfeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, China.
| | - Hongyu Guan
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, China
| |
Collapse
|
23
|
Bhadra U, Patra P, Chhatai J, Pal-Bhadra M. Pigmy MicroRNA: surveillance cops in Therapies kingdom. Mol Med 2016; 22:759-775. [PMID: 27704139 PMCID: PMC5193465 DOI: 10.2119/molmed.2016.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are well preserved in every animal. These pigmy sized non-coding RNAs (21-23 nt), scattered in genome, are responsible for micromanaging the versatile gene regulations. Involvement of miRNAs was surveillance cops in all human diseases including cardiovascular defects, tumor formation, reproductive pathways, and neurological and autoimmune disorders. The effective functional role of miRNA can be reduced by chemical entities of antisense oligonucleotides and versatile small molecules that support the views of novel therapy of different human diseases. In this study, we have updated our current understanding for designing and synthesizing miRNA-controlling therapeutic chemicals. We have also proposed various in-vivo delivery strategies and their ongoing challenges to combat the incorporation hurdles in live cells and animals. Lastly, we have demonstrated the current progress of miRNA modulation in the treatment of different human diseases that provides an alternative approach of gene therapy.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Pradipta Patra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Jagamohan Chhatai
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India
| |
Collapse
|
24
|
Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5:1917-46. [PMID: 27282910 PMCID: PMC4971921 DOI: 10.1002/cam4.775] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.
Collapse
Affiliation(s)
- Amanda Shea
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | | | - Zainab Afzal
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Juliet Chijioke
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Habib Kedir
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Shahnoza Dusmatova
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Arpita Roy
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Malathi Ramalinga
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Brent Harris
- Department of Neurology and PathologyGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Jan Blancato
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Mukesh Verma
- Division of Cancer Control and Population SciencesNational Cancer Institute (NCI)National Institutes of Health (NIH)RockvilleMaryland20850
| | - Deepak Kumar
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| |
Collapse
|
25
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
26
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
27
|
Dang K, Myers KA. The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 2015; 16:6353-72. [PMID: 25809609 PMCID: PMC4394536 DOI: 10.3390/ijms16036353] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor development, highlights the importance of hypoxia-induced miRs as targets for continued investigation. miRs are short, non-coding transcripts involved in gene expression and regulation. Under hypoxic conditions, miR-210 becomes highly upregulated in response to hypoxia inducing factors (HIFs). HIF-1α drives miR-210’s overexpression and the resultant alteration of cellular processes, including cell cycle regulation, mitochondria function, apoptosis, angiogenesis and metastasis. Here we discuss hypoxia-induced dysregulation of miR-210 and the resultant changes in miR-210 protein targets that regulate cancer progression. Potential methods of targeting miR-210 as a therapeutic tool are also explored.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| |
Collapse
|