1
|
Bi Z, Li J, Liu Q, Fang Z. Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis. Front Endocrinol (Lausanne) 2025; 16:1485311. [PMID: 40171193 PMCID: PMC11958191 DOI: 10.3389/fendo.2025.1485311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Objective To systematically review and meta-analyze the effectiveness of deep learning algorithms applied to optical coherence tomography (OCT) and retinal images for the detection of diabetic retinopathy (DR). Methods We conducted a comprehensive literature search in multiple databases including PubMed, Cochrane library, Web of Science, Embase and IEEE Xplore up to July 2024. Studies that utilized deep learning techniques for the detection of DR using OCT and retinal images were included. Data extraction and quality assessment were performed independently by two reviewers. Meta-analysis was conducted to determine pooled sensitivity, specificity, and diagnostic odds ratios. Results A total of 47 studies were included in the systematic review, 10 were meta-analyzed, encompassing a total of 188268 retinal images and OCT scans. The meta-analysis revealed a pooled sensitivity of 1.88 (95% CI: 1.45-2.44) and a pooled specificity of 1.33 (95% CI: 0.97-1.84) for the detection of DR using deep learning models. All of the outcome of deep learning-based optical coherence tomography ORs ≥0.785, indicating that all included studies with artificial intelligence assistance produced good boosting results. Conclusion Deep learning-based approaches show high accuracy in detecting diabetic retinopathy from OCT and retinal images, supporting their potential as reliable tools in clinical settings. Future research should focus on standardizing datasets, improving model interpretability, and validating performance across diverse populations. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024575847.
Collapse
Affiliation(s)
- Zheng Bi
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jinju Li
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Qiongyi Liu
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
- Xin ‘an Medical and Chinese Medicine Modernization Research Institute, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
2
|
Koshizaka M, Tatsumi T, Kiyonaga F, Kosakai Y, Yoshinaga Y, Shintani-Tachi M. Comparison of the Risk of Diabetic Retinopathy Between Sodium-Glucose Cotransporter-2 Inhibitors and Dipeptidyl Peptidase-4 Inhibitors in Patients with Type 2 Diabetes Mellitus in Japan: A Retrospective Analysis of Real-World Data. Diabetes Ther 2024; 15:2401-2416. [PMID: 39347896 PMCID: PMC11467146 DOI: 10.1007/s13300-024-01649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR), a microvascular complication of type 2 diabetes mellitus (T2DM), is a leading cause of blindness and has detrimental effects on patients' quality of life. We compared the risk of DR diagnosis with sodium-glucose cotransporter-2 inhibitors (SGLT2i) versus dipeptidyl peptidase-4 inhibitors (DPP-4i) in patients with T2DM in Japan. METHODS This Japanese retrospective cohort study used the JMDC Claims Database (data collected from January 2015 to September 2022). Patients with T2DM and no record of microvascular or macrovascular diseases who were newly treated with an SGLT2i (23,061 patients) or a DPP-4i (53,986 patients) were matched 1:1 using propensity score (10,166 per matched group). Incidence rates (IRs) and cumulative IRs of DR diagnosis were calculated for each treatment group; hazard ratio (HR) and its 95% confidence interval (CI) were calculated using Cox proportional hazard models to compare the risk between the groups. RESULTS The IR of DR diagnosis was 46.23 and 57.12 per 1000 person-years in the SGLT2i and DPP-4i groups, respectively, with a significantly lower risk in the SGLT2i group than in the DPP-4i group (HR 0.83, 95% CI 0.75-0.92, P = 0.0003). CONCLUSIONS In this study, the risk of DR diagnosis was lower with SGLT2i compared with DPP-4i in patients with T2DM without microvascular and macrovascular diseases in Japan. Findings suggest that early SGLT2i treatment may be beneficial in preventing DR development in early-stage T2DM. Graphical abstract available for this article.
Collapse
Affiliation(s)
- Masaya Koshizaka
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8670, Japan.
- Center for Preventive Medical Science, Chiba University, Chiba, Japan.
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.
| | - Tomoaki Tatsumi
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | |
Collapse
|
3
|
Manafi N, Oncel D, Verma A, Corradetti G, Kadomoto S, Mahmoudi A, Alagorie AR, Yadav NK, Pappuru RR, Tufail A, Esmaeilkhanian H, Nittala MG, Raman R, Sadda S. Relationship between macular perfusion and lesion distribution in diabetic retinopathy. Eye (Lond) 2024; 38:2724-2730. [PMID: 38724702 PMCID: PMC11427675 DOI: 10.1038/s41433-024-03105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES To assess the relationship between macular vessel density metrics and foveal avascular zone (FAZ) characteristics on optical coherence tomography angiography (OCTA) and lesion distribution in eyes with diabetic retinopathy (DR). SUBJECTS/METHODS Patients with DR who underwent both Optos ultrawidefield (UWF) pseudocolor imaging and macular OCTA (Cirrus Angioplex, 6 × 6 mm) were included in this cross-sectional observational study. The distribution of DR lesions was assessed by comparing each of the peripheral ETDRS extended fields (3-7) against their corresponding ETDRS field, hence eyes were defined as either having predominantly peripheral lesions (PPL) or predominantly central lesions (PCL). En face OCTA images from the superficial and deep capillary plexuses (SCP and DCP) were then analysed using Image J software. Perfusion density (PD), vessel length density (VLD), and fractal dimensions (FD) were calculated following binarization and skeletonization of the images. RESULTS Out of 344 eyes, 116 (33.72%) eyes had PPL and 228 (66.28%) eyes had PCL. For all DRSS levels, VLD, PD, and FD were not significantly different between eyes with PPL and PCL. The FAZ in eyes with PPL, however, was found to be more circular in shape compared to eyes with PCL (p = 0.037). CONCLUSION Although the presence of PPL has been associated with a higher risk for diabetic retinopathy progression, the macular perfusion is similar in eyes with PPL and PCL. The FAZ is more circular in eyes with PPL, but the clinical relevance of this difference remains to be defined.
Collapse
Affiliation(s)
- Navid Manafi
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Deniz Oncel
- Loyola University, Chicago, Stritch School of Medicine, Chicago, IL, 60153, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Shin Kadomoto
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alireza Mahmoudi
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ahmed Roshdy Alagorie
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Naresh Kumar Yadav
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Rajeev R Pappuru
- Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Adnan Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Houri Esmaeilkhanian
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Muneeswar G Nittala
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Srinivas Sadda
- Doheny Eye Institute, Pasadena, CA, USA.
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lyu D, Liu H, Fang Y, Wang Y. Case reports: Intraoperative migratory retinal venous thrombus in proliferative diabetic retinopathy. Front Med (Lausanne) 2024; 11:1372831. [PMID: 39314228 PMCID: PMC11417017 DOI: 10.3389/fmed.2024.1372831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose This study aimed to study the characteristics, possible causes, and clinical implications of intraoperative migratory retinal venous thrombus in proliferative diabetic retinopathy (PDR). Cases Two middle-aged Chinese patients with diabetes mellitus presented with blurred vision and were diagnosed with PDR and tractional retinal detachment (TRD). An interesting phenomenon was observed during pars plana vitrectomy in both patients. Movement of tiny white thrombi and interruption of blood flow were observed in a branch of the central retinal vein when the vein was pulled at the time of fibrovascular membrane delamination and disappeared with the elimination of retinal traction after finishing the process of delamination. Laboratory studies revealed abnormal erythrocyte sedimentation rate, fibrinogen, D-dimer, international normalized ratio, and IgA anti-β2-glycoprotein I in one patient and elevated fibrinogen and IgA anticardiolipin in the other. Follow-up examinations at 1 week, 1, 3, and 6 months postoperatively showed good prognosis. Fluorescein fundus angiography at 1 month postoperatively showed neither embolus sign nor prolonged venous filling time in both patients. Discussion Local blood stasis of the retinal vein persistently dragged by the fibrovascular membrane may result in thrombogenesis, and traction of the retina during the delamination process may lead to the movement of thrombi. On the other hand, endothelial injury and disordered local blood stasis during delamination may also activate the biological coagulation process and instant thrombus formation. As well, antiphospholipid antibodies may also be a risk factor of ocular thrombogenesis. Conclusion This study provides the first videos recording migratory thrombus in terminal vessels, which indicates that fibrovascular membrane in PDR can lead to thrombogenesis due to dragging and hemostasis of the involved retinal vein. PDR patients with fibrovascular membranes may benefit from early relief of vascular traction through fibrovascular membrane delamination.
Collapse
Affiliation(s)
- Danni Lyu
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huan Liu
- Department of Ophthalmology, The First People’s Hospital of Lin’an District, Hangzhou, Zhejiang, China
| | - Yijiong Fang
- Department of Ophthalmology, The First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yao Wang
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
6
|
Trotta MC, Gesualdo C, Russo M, Lepre CC, Petrillo F, Vastarella MG, Nicoletti M, Simonelli F, Hermenean A, D’Amico M, Rossi S. Changes in Circulating Acylated Ghrelin and Neutrophil Elastase in Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:118. [PMID: 38256379 PMCID: PMC10820226 DOI: 10.3390/medicina60010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The role and the levels of ghrelin in diabetes-induced retinal damage have not yet been explored. The present study aimed to measure the serum levels of total ghrelin (TG), and its acylated (AG) and des-acylated (DAG) forms in patients with the two stages of diabetic retinopathy (DR), non-proliferative (NPDR) and proliferative (PDR). Moreover, the correlation between serum ghrelin and neutrophil elastase (NE) levels was investigated. Materials and Methods: The serum markers were determined via enzyme-linked immunosorbent assays in 12 non-diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with NPDR, and 15 patients with PDR. Results: TG and AG serum levels were significantly decreased in Diabetic (respectively, p < 0.05 and p < 0.01 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and in PDR patients (p < 0.01 vs. NPDR). AG serum levels were inversely associated with DR abnormalities (microhemorrhages, microaneurysms, and exudates) progression (r = -0.83, p < 0.01), serum neutrophil percentage (r = -0.74, p < 0.01), and serum NE levels (r = -0.73, p < 0.01). The latter were significantly increased in the Diabetic (p < 0.05 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and PDR (p < 0.01 vs. PDR) groups. Conclusions: The two DR stages were characterized by decreased AG and increased NE levels. In particular, serum AG levels were lower in PDR compared to NPDR patients, and serum NE levels were higher in the PDR vs. the NPDR group. Together with the greater presence of retinal abnormalities, this could underline a distinctive role of AG in PDR compared to NPDR.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Giovanna Vastarella
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| |
Collapse
|
7
|
Robles JP, Zamora M, Garcia-Rodrigo JF, Perez AL, Bertsch T, Martinez de la Escalera G, Triebel J, Clapp C. Vasoinhibin's Apoptotic, Inflammatory, and Fibrinolytic Actions Are in a Motif Different From Its Antiangiogenic HGR Motif. Endocrinology 2023; 165:bqad185. [PMID: 38057149 DOI: 10.1210/endocr/bqad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Vasoinhibin, a proteolytic fragment of the hormone prolactin, inhibits blood vessel growth (angiogenesis) and permeability, stimulates the apoptosis and inflammation of endothelial cells, and promotes fibrinolysis. The antiangiogenic and antivasopermeability properties of vasoinhibin were recently traced to the HGR motif located in residues 46 to 48 (H46-G47-R48), allowing the development of potent, orally active, HGR-containing vasoinhibin analogues for therapeutic use against angiogenesis-dependent diseases. However, whether the HGR motif is also responsible for the apoptotic, inflammatory, and fibrinolytic properties of vasoinhibin has not been addressed. Here, we report that HGR-containing analogues are devoid of these properties. Instead, the incubation of human umbilical vein endothelial cells with oligopeptides containing the sequence HNLSSEM, corresponding to residues 30 to 36 of vasoinhibin, induced apoptosis, nuclear translocation of NF-κB, expression of genes encoding leukocyte adhesion molecules (VCAM1 and ICAM1) and proinflammatory cytokines (IL1B, IL6, and TNF), and adhesion of peripheral blood leukocytes. Also, intravenous or intra-articular injection of HNLSSEM-containing oligopeptides induced the expression of Vcam1, Icam1, Il1b, Il6, and Tnf in the lung, liver, kidney, eye, and joints of mice and, like vasoinhibin, these oligopeptides promoted the lysis of plasma fibrin clots by binding to plasminogen activator inhibitor-1 (PAI-1). Moreover, the inhibition of PAI-1, urokinase plasminogen activator receptor, or NF-κB prevented the apoptotic and inflammatory actions. In conclusion, the functional properties of vasoinhibin are segregated into 2 different structural determinants. Because apoptotic, inflammatory, and fibrinolytic actions may be undesirable for antiangiogenic therapy, HGR-containing vasoinhibin analogues stand as selective and safe agents for targeting pathological angiogenesis.
Collapse
Affiliation(s)
- Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
- VIAN Therapeutics, Inc., San Francisco, CA 94107, USA
| | - Magdalena Zamora
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Jose F Garcia-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Alma Lorena Perez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| | - Thomas Bertsch
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | | | - Jakob Triebel
- Laboratory Medicine and Transfusion Medicine, Institute for Clinical Chemistry, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg 90419, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, México
| |
Collapse
|
8
|
Sanatkar M, Nozarian Z, Abdi P, Bazvand F. Evaluation of Histopathologic Findings and Safety of Intravitreal Ketamine Administration on Vitreoretinal Tissue in Rat Model: A Pilot Study. J Curr Ophthalmol 2023; 35:297-300. [PMID: 38681690 PMCID: PMC11047802 DOI: 10.4103/joco.joco_230_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 05/01/2024] Open
Abstract
Purpose To evaluate the safety and histological findings of intravitreal injection of ketamine in rats. Methods Each rat received a total volume of 0.1 ml of ketamine 0.01 mol/L (5 rats as ketamine group) or a total of 0.1 ml of normal saline 0.9% (5 rats as control group) under general anesthesia in a sterile condition. A histology assessment was performed 1 month after the intravitreal injection. Results Lens opacity, necrosis, and atrophy of retinal layers and optic disc were not seen in five specimens in the ketamine group and five in the normal saline group. There was no inflammation in the vitreous, retinal layers, choroid, optic disc, and optic nerve in both groups. Conclusion Intravitreal injection of ketamine in a special dose has no obvious adverse effect on diverse intraocular tissue.
Collapse
Affiliation(s)
- Mehdi Sanatkar
- Anesthesiology Department, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Nozarian
- Pathology Department, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Parisa Abdi
- Anterior Segment Department, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Bazvand
- Vitreoretinal Department, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Kitano H, Ishikawa T, Masaoka Y, Komiyama K, Takahashi M, Hidai C. The EGF Motif With CXDXXXXYXCXC Sequence Suppresses Fibrosis in a Mouse Skin Wound Model. In Vivo 2023; 37:1486-1497. [PMID: 37369508 PMCID: PMC10347959 DOI: 10.21873/invivo.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/AIM Fibrosis is an essential process for wound healing, but excessive fibrosis, such as keloids and hypertrophic scars, can cause cosmetic and functional problems. These lesions are caused by abnormal deposition and shrinkage of collagen fibers. The light chain of FIX, a plasma protein essential for hemostasis, has the amino acid sequence CXDXXXXYXCXC in the EGF domain. Peptides containing this sequence inhibited stromal growth in a mouse transplant tumor model. In this study, the effect of the FIX light chain on wound healing was studied. MATERIALS AND METHODS A full-layer wound was made on the back of each mouse, and cDNA encoding the light chain of mouse FIX (F9-LC) in an expression vector was injected locally once each week using a non-viral vector. Histochemical analysis of the wound was then performed to assess the effects on wound healing. Moreover, the effect of F9-LC on fibroblasts was studied in vitro. RESULTS Macroscopic observation showed that wounds with forced expression of F9-LC appeared flatter and had fewer wrinkles than control wounds. Tissue collagen staining and immunostaining revealed that administration of F9-LC suppressed collagen 1 and 3 deposition and decreased α-smooth muscle actin expression. Electron microscopy revealed sparse and disorganized collagen fibers in the F9-LC-treated mice. In experiments using fibroblasts, addition of a recombinant protein of the FIX light chain disrupted the typical spindle shape and alignment of fibroblasts. CONCLUSION F9-LC is a new candidate for use in treatments to regulate excessive fibrosis and contraction in wound healing.
Collapse
Affiliation(s)
- Hisataka Kitano
- Division of Oral Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomomi Ishikawa
- Division of Oral Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoh Masaoka
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhiro Komiyama
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mamiko Takahashi
- Division of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Chiaki Hidai
- Division of Medical Education, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Alwakid G, Gouda W, Humayun M. Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement. Healthcare (Basel) 2023; 11:863. [PMID: 36981520 PMCID: PMC10048517 DOI: 10.3390/healthcare11060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Vision loss can be avoided if diabetic retinopathy (DR) is diagnosed and treated promptly. The main five DR stages are none, moderate, mild, proliferate, and severe. In this study, a deep learning (DL) model is presented that diagnoses all five stages of DR with more accuracy than previous methods. The suggested method presents two scenarios: case 1 with image enhancement using a contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction with an enhanced super-resolution generative adversarial network (ESRGAN), and case 2 without image enhancement. Augmentation techniques were then performed to generate a balanced dataset utilizing the same parameters for both cases. Using Inception-V3 applied to the Asia Pacific Tele-Ophthalmology Society (APTOS) datasets, the developed model achieved an accuracy of 98.7% for case 1 and 80.87% for case 2, which is greater than existing methods for detecting the five stages of DR. It was demonstrated that using CLAHE and ESRGAN improves a model's performance and learning ability.
Collapse
Affiliation(s)
- Ghadah Alwakid
- Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia;
| | - Walaa Gouda
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt;
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah 72341, Al Jouf, Saudi Arabia
| |
Collapse
|
11
|
Fickweiler W, Mitzner M, Jacoba CMP, Sun JK. Circulatory Biomarkers and Diabetic Retinopathy in Racial and Ethnic Populations. Semin Ophthalmol 2023:1-11. [PMID: 36710371 DOI: 10.1080/08820538.2023.2168488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical staging systems for diagnosis and treatment of diabetic retinopathy (DR) must closely relate to endpoints that are both relevant for patients and feasible for physicians to implement. Current DR staging systems for clinical eye care and research provide detailed phenotypic characterization to predict patient outcomes in diabetes but have limitations. Biochemical biomarkers provide a rich pool of potential candidates for new DR staging systems that can be readily measured in accessible fluids. Circulating biomarkers that are specific to the retina and relate to angiogenesis and inflammation have been suggested as relevant for DR. Although there is a lack of multi-ethnic studies evaluating circulatory biomarkers in DR, variability in circulatory biomarkers have been reported in people from different ethnic and racial backgrounds. Therefore, there is a need for future studies to evaluate individual or combinations of biomarkers in diverse populations with DR from different ethnic and racial backgrounds.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Margalit Mitzner
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Cris Martin P Jacoba
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Hassan D, Gill HM, Happe M, Bhatwadekar AD, Hajrasouliha AR, Janga SC. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Front Med (Lausanne) 2022; 9:1050436. [PMID: 36425113 PMCID: PMC9681494 DOI: 10.3389/fmed.2022.1050436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a late microvascular complication of Diabetes Mellitus (DM) that could lead to permanent blindness in patients, without early detection. Although adequate management of DM via regular eye examination can preserve vision in in 98% of the DR cases, DR screening and diagnoses based on clinical lesion features devised by expert clinicians; are costly, time-consuming and not sufficiently accurate. This raises the requirements for Artificial Intelligent (AI) systems which can accurately detect DR automatically and thus preventing DR before affecting vision. Hence, such systems can help clinician experts in certain cases and aid ophthalmologists in rapid diagnoses. To address such requirements, several approaches have been proposed in the literature that use Machine Learning (ML) and Deep Learning (DL) techniques to develop such systems. However, these approaches ignore the highly valuable clinical lesion features that could contribute significantly to the accurate detection of DR. Therefore, in this study we introduce a framework called DR-detector that employs the Extreme Gradient Boosting (XGBoost) ML model trained via the combination of the features extracted by the pretrained convolutional neural networks commonly known as transfer learning (TL) models and the clinical retinal lesion features for accurate detection of DR. The retinal lesion features are extracted via image segmentation technique using the UNET DL model and captures exudates (EXs), microaneurysms (MAs), and hemorrhages (HEMs) that are relevant lesions for DR detection. The feature combination approach implemented in DR-detector has been applied to two common TL models in the literature namely VGG-16 and ResNet-50. We trained the DR-detector model using a training dataset comprising of 1,840 color fundus images collected from e-ophtha, retinal lesions and APTOS 2019 Kaggle datasets of which 920 images are healthy. To validate the DR-detector model, we test the model on external dataset that consists of 81 healthy images collected from High-Resolution Fundus (HRF) dataset and MESSIDOR-2 datasets and 81 images with DR signs collected from Indian Diabetic Retinopathy Image Dataset (IDRID) dataset annotated for DR by expert. The experimental results show that the DR-detector model achieves a testing accuracy of 100% in detecting DR after training it with the combination of ResNet-50 and lesion features and 99.38% accuracy after training it with the combination of VGG-16 and lesion features. More importantly, the results also show a higher contribution of specific lesion features toward the performance of the DR-detector model. For instance, using only the hemorrhages feature to train the model, our model achieves an accuracy of 99.38 in detecting DR, which is higher than the accuracy when training the model with the combination of all lesion features (89%) and equal to the accuracy when training the model with the combination of all lesions and VGG-16 features together. This highlights the possibility of using only the clinical features, such as lesions that are clinically interpretable, to build the next generation of robust artificial intelligence (AI) systems with great clinical interpretability for DR detection. The code of the DR-detector framework is available on GitHub at https://github.com/Janga-Lab/DR-detector and can be readily employed for detecting DR from retinal image datasets.
Collapse
Affiliation(s)
- Doaa Hassan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Computers and Systems Department, National Telecommunication Institute, Cairo, Egypt
| | - Hunter Mathias Gill
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
| | - Michael Happe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashay D. Bhatwadekar
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amir R. Hajrasouliha
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, IN, United States
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, IN, United States
- *Correspondence: Sarath Chandra Janga
| |
Collapse
|
13
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
ITGA2 Gene Polymorphism Is Associated with Type 2 Diabetes Mellitus in the Kazakhstan Population. Medicina (B Aires) 2022; 58:medicina58101416. [PMID: 36295578 PMCID: PMC9606878 DOI: 10.3390/medicina58101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Nowadays, every tenth adult in the world suffers from diabetes mellitus (DM). Diabetic retinopathy (DR) is the most common microvascular complication of type 2 DM (T2DM) and a leading cause of acquired blindness in middle-aged individuals in many countries. Previous studies have identified associations of several gene polymorphisms with susceptibility to microvascular complications of DM in various worldwide populations. In our study, we aimed to test the hypothesis of the associations of single nucleotide polymorphisms (SNP) of the VEGF (−2549I/D), RAGE (−429T/C and −374T/A), TCF7L2 (rs7903146), and ITGA2 (BglII) genes with a predisposition to DR among T2DM patients in the Kazakhstan population. Materials and Methods: We conducted a case–control study comparing the genotype distribution and allele frequencies between groups of DR patients (N = 94), diabetic patients without DR (N = 94), and healthy controls (N = 51). Genotypes were identified using the PCR-RFLP method. Results: In all cases, the genotype distribution corresponded to the Hardy–Weinberg equilibrium. The groups of diabetic patients with and without DR did not significantly differ in the genotype distribution of the SNPs studied. Differences between both groups of diabetic patients and healthy controls in four out of five SNPs were also not significant. At the same time, both groups of diabetic patients differed significantly from healthy controls in genotype distribution (p = 0.042 and 0.005, respectively) and allele frequencies (p = 0.021 and 0.002, respectively) of the BglII polymorphism in the ITGA2 gene. After adjusting for multiple comparisons, the differences between the group of diabetic patients without DR and the control group remained significant (pBonf = 0.027 for genotypes and pBonf = 0.009 for alleles). The BglII− allele was associated with diabetes: OR = 1.81 [1.09–2.99] for DR patients, and OR = 2.24 [1.34–3.75] for diabetic patients without DR. The association was also observed in the subset of Kazakhs. Conclusions: This study shows that the BglII polymorphism in the ITGA2 gene can be associated with T2DM but not with DR. According to our data, the risk allele for diabetes is the wild BglII− allele, and not the minor BglII+, which is considered as risky for DR.
Collapse
|
15
|
Shaukat N, Amin J, Sharif M, Azam F, Kadry S, Krishnamoorthy S. Three-Dimensional Semantic Segmentation of Diabetic Retinopathy Lesions and Grading Using Transfer Learning. J Pers Med 2022; 12:jpm12091454. [PMID: 36143239 PMCID: PMC9501488 DOI: 10.3390/jpm12091454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR) is a drastic disease. DR embarks on vision impairment when it is left undetected. In this article, learning-based techniques are presented for the segmentation and classification of DR lesions. The pre-trained Xception model is utilized for deep feature extraction in the segmentation phase. The extracted features are fed to Deeplabv3 for semantic segmentation. For the training of the segmentation model, an experiment is performed for the selection of the optimal hyperparameters that provided effective segmentation results in the testing phase. The multi-classification model is developed for feature extraction using the fully connected (FC) MatMul layer of efficient-net-b0 and pool-10 of the squeeze-net. The extracted features from both models are fused serially, having the dimension of N × 2020, amidst the best N × 1032 features chosen by applying the marine predictor algorithm (MPA). The multi-classification of the DR lesions into grades 0, 1, 2, and 3 is performed using neural network and KNN classifiers. The proposed method performance is validated on open access datasets such as DIARETDB1, e-ophtha-EX, IDRiD, and Messidor. The obtained results are better compared to those of the latest published works.
Collapse
Affiliation(s)
- Natasha Shaukat
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan
| | - Javeria Amin
- Department of Computer Science, University of Wah, Wah Campus, Wah Cantt 47010, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan
- Correspondence: (M.S.); (S.K.)
| | - Faisal Azam
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
| | - Sujatha Krishnamoorthy
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Correspondence: (M.S.); (S.K.)
| |
Collapse
|
16
|
Ikeda T, Nakamura K, Kida T, Oku H. Possible roles of anti-type II collagen antibody and innate immunity in the development and progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260:387-403. [PMID: 34379187 PMCID: PMC8786754 DOI: 10.1007/s00417-021-05342-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 macrophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Department of Ophthalmology, Osaka Kaisei Hospital, 1-6-10 Miyahara Yodogawa-ku, Osaka City, Osaka, Japan.
| | | | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
17
|
Jiang Y, Han J, Spencer P, Li Y, Vodovoz SJ, Ning MM, Liu N, Wang X, Dumont AS. Diabetes mellitus: A common comorbidity increasing hemorrhagic transformation after tPA thrombolytic therapy for ischemic stroke. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Cytokines associated with hemorrhage in proliferative diabetic retinopathy. Int Ophthalmol 2021; 41:1845-1853. [PMID: 33609201 DOI: 10.1007/s10792-021-01746-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate aqueous cytokine levels in association with hemorrhage in proliferative diabetic retinopathy (PDR) in patients with type 2 diabetes mellitus. METHODS Sixty-six eyes with treatment-naïve PDR, including 26 hemorrhagic and 40 nonhemorrhagic eyes were included in this institutional study. Aqueous humor levels of interleukin (IL)-1b, IL-6, IL-8, IL-10, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and soluble VEGF receptor-1 were obtained by multiplex bead assay. Visual acuity and hemorrhage area measurements were obtained, and correlations between cytokine levels and hemorrhage were identified. RESULTS Levels of MCP-1, TNF-α, and VEGF were higher in hemorrhagic eyes (1506.77 vs. 2131.31 pg/mL, 0.43 vs. 0.63 pg/mL, and 103.96 vs. 206.96 pg/mL; P = 0.050, 0.022, and 0.027, respectively). The levels of IL-8, MCP-1, TNF-α, and VEGF showed positive correlation with visual acuity (P = 0.019, 0.015, 0.001, and 0.014, respectively). The hemorrhage area revealed positive correlation with TNF-α and VEGF levels (P = 0.001 and < 0.001, respectively). CONCLUSION The presence and amount of hemorrhage in PDR were associated not only with VEGF concentration, but also with the levels of certain inflammatory cytokines, suggesting a role of both VEGF and inflammation in hemorrhagic eyes.
Collapse
|
19
|
Liu S, Fang Y, Yu J, Chang X. Hawthorn polyphenols reduce high glucose-induced inflammation and apoptosis in ARPE-19 cells by regulating miR-34a/SIRT1 to reduce acetylation. J Food Biochem 2021; 45:e13623. [PMID: 33491221 DOI: 10.1111/jfbc.13623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy is a major complication in patients with diabetes. Herein, we investigate how hawthorn polyphenol extract (HPE) affects high glucose-induced oxidation, inflammation, and apoptosis in ARPE-19 cells. HPLC-MS/MS was used to determine HPE content and composition. Reactive oxygen species (ROS) production was assessed using fluorescence microscopy, while glucose-induced gene and protein expressions were analyzed using real-time PCR and western blotting in cells transfected with miR-34a mimics. We found that treating cells with 10 μg/ml of HPE, 30 μM procyanidin B2, chlorogenic acid, epicatechin, or resveratrol (positive control) significantly reduced ROS production and decreased apoptosis and inflammation-related factors (p < .01). Moreover, the expression level of SIRT1 was increased, while that of acetylated NF-κB p65 and p53 proteins was decreased. These data suggest that HPE can inhibit oxidative damage, inflammation, and apoptosis through the AMPK/SIRT1/NF-κB pathway, and decrease miR-34a/SIRT1/p53 pathway activation in ARPE-19 cells, thereby demonstrating a potential use as a food additive to mitigate hyperglycemia-induced retinal damage. PRACTICAL APPLICATIONS: Hawthorn polyphenol extract (HPE) significantly reduced ROS levels, apoptosis, and the expression of inflammation-related factors in ARPE-19 cells. HPE also inhibited the AMPK/SIRT1/NF-κB and miR-34a/SIRT1/p53 pathways, which are involved in hyperglycemia-induced inflammation and apoptosis of ARPE-19 cells by regulating acetylation. Thus, HPE, as a potential food additive, may mitigate hyperglycemia-induced retinal damage.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuan Fang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei (Chengde) Hawthorn Industrial Technology Research Institute, Chengde, China
| |
Collapse
|
20
|
Ranaldi GT, Villani ER, Franza L. Rationale for ozone-therapy as an adjuvant therapy in COVID-19: a narrative review. Med Gas Res 2020; 10:134-138. [PMID: 33004712 PMCID: PMC8086623 DOI: 10.4103/2045-9912.289462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the respiratory disease caused by the novel severe acute respiratory syndrome-coronavirus-2 and is characterized by clinical manifestations ranging from mild, flu-like symptoms to severe respiratory insufficiency and multi-organ failure. Patients with more severe symptoms may require intensive care treatments and face a high mortality risk. Also, thrombotic complications such as pulmonary embolisms and disseminated intravascular coagulation are frequent in these patients. Indeed, COVID-19 is characterized by an abnormal inflammatory response resembling a cytokine storm, which is associated to endothelial dysfunction and microvascular complications. To date, no specific treatments are available for COVID-19 and its life-threatening complication. Immunomodulatory drugs, such as hydroxychloroquine and interleukin-6 inhibitors, as well as antithrombotic drugs such as heparin and low molecular weight heparin, are currently being administered with some benefit. Ozone therapy consists in the administration of a mixture of ozone and oxygen, called medical ozone, which has been used for over a century as an unconventional medicine practice for several diseases. Medical ozone rationale in COVID-19 is the possibility of contrasting endothelial dysfunction, modulating the immune response and acting as a virustatic agent. Thus, medical ozone could help to decrease lung inflammation, slow down viral growth, regulate lung circulation and oxygenation and prevent microvascular thrombosis. Ozone-therapy could be considered a feasible, cost-effective and easy to administer adjuvant therapy while waiting for the synthesis of a therapy or the development of the vaccine.
Collapse
Affiliation(s)
- Giovanni Tommaso Ranaldi
- Unità Operativa Semplice Dipartimentale Farmacologia Clinica e Sperimentazione Clinica, Azienda Sanitaria, Potenza, Italy
| | | | - Laura Franza
- Department of Emergency Medicine, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
21
|
Shiono A, Sasaki H, Sekine R, Abe Y, Matsumura Y, Inagaki T, Tanaka T, Kodama T, Aburatani H, Sakai J, Takagi H. PPARα activation directly upregulates thrombomodulin in the diabetic retina. Sci Rep 2020; 10:10837. [PMID: 32616724 PMCID: PMC7331602 DOI: 10.1038/s41598-020-67579-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Two large clinical studies showed that fenofibrate, a commonly used peroxisome proliferator-activated receptor α (PPARα) agonist, has protective effects against diabetic retinopathy. However, the underlying mechanism has not been clarified. We performed genome-wide analyses of gene expression and PPARα binding sites in vascular endothelial cells treated with the selective PPARα modulator pemafibrate and identified 221 target genes of PPARα including THBD, which encodes thrombomodulin (TM). ChIP-qPCR and luciferase reporter analyses showed that PPARα directly regulated THBD expression via binding to the promoter. In the rat diabetic retina, treatment with pemafibrate inhibited the expression of inflammatory molecules such as VCAM-1 and MCP1, and these effects were attenuated by intravitreal injection of small interfering RNA targeted to THBD. Furthermore, pemafibrate treatment inhibited diabetes-induced vascular leukostasis and leakage through the upregulation of THBD. Our results indicate that PPARα activation inhibits inflammatory and vasopermeable responses in the diabetic retina through the upregulation of TM.
Collapse
Affiliation(s)
- Akira Shiono
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Hiroki Sasaki
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Reio Sekine
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Yohei Abe
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, IMCR, Gunma University, 3-39-15 Showa-cho, Maebashi, Gunma, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.,Molecular Physiology and Metabolism Division, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba, Sendai, Miyagi, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
22
|
Song DY, Gu JY, Yoo HJ, Kim YI, Nam-Goong IS, Kim ES, Kim HK. Activation of Factor XII and Kallikrein-Kinin System Combined with Neutrophil Extracellular Trap Formation in Diabetic Retinopathy. Exp Clin Endocrinol Diabetes 2019; 129:560-565. [PMID: 31426112 DOI: 10.1055/a-0981-6023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND In diabetic retinopathy (DR), neutrophil extracellular traps (NET) and kallikrein-kinin system are considered as contributing factors. However, the detail activation mechanisms has not been fully understood. Since the NET could provide negative-charged surface for factor XII activation and the activated factor XII (XIIa) can initiate kallikrein-kinin system, this study investigated whether patients with DR show activation of NET, factor XII and kallikrein-kinin system. METHODS The markers related to NET (DNA-histone complex) and kallikrein-kinin system (high-molecular-weight kininogen, prekallikrein, bradykinin) and factor XIIa were measured in 253 patients with diabetes. To access ex vivo effect of glucose, DNA-histone complex and factor XIIa were measured in whole blood stimulated by glucose. RESULTS The circulating level of DNA-histone complex and factor XIIa were significantly higher in patients with DR than those without DR. In logistic regression analysis, DNA-histone complex, factor XIIa, and high-molecular-weight kininogen were the risk factors of DR. In recursive partitioning analysis, among patients with diabetes duration less than 10 years, patients with high level of DNA-histone complex (>426 AU) showed high risk of DR. In ex vivo experiment, glucose significantly elevated both DNA-histone complex and factor XIIa. CONCLUSION Our findings suggest that activation of factor XII and kallikrein-kinin system combined with NET formation actively occur in patients with DR and circulating levels of DNA-histone complex, factor XIIa and HMWK can be potential biomarkers to estimate the risk of DR. Strategies against factor XII activation may be beneficial to inhibit DR.
Collapse
Affiliation(s)
- Da Young Song
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Il Sung Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Han Y, Shang Q, Yao J, Ji Y. Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 2019; 10:293. [PMID: 30926772 PMCID: PMC6441042 DOI: 10.1038/s41419-019-1525-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) serves as a gasotransmitter in the regulation of organ development and maintenance of homeostasis in tissues. Its abnormal levels are associated with multiple human diseases, such as neurodegenerative disease, myocardial injury, and ophthalmic diseases. Excessive exposure to H2S could lead to cellular toxicity, orchestrate pathological process, and increase the risk of various diseases. Interestingly, under physiological status, H2S plays a critical role in maintaining cellular physiology and limiting damages to tissues. In mammalian species, the generation of H2S is catalyzed by cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), 3-mercapto-methylthio pyruvate aminotransferase (3MST) and cysteine aminotransferase (CAT). These enzymes are found inside the mammalian eyeballs at different locations. Their aberrant expression and the accumulation of substrates and intermediates can change the level of H2S by orders of magnitude, causing abnormal structures or functions in the eyes. Detailed investigations have demonstrated that H2S donors' administration could regulate intraocular pressure, protect retinal cells, inhibit oxidative stress and alleviate inflammation by modulating the function of intra or extracellular proteins in ocular tissues. Thus, several slow-releasing H2S donors have been shown to be promising drugs for treating multiple diseases. In this review, we discuss the biological function of H2S metabolism and its application in ophthalmic diseases.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Qianwen Shang
- Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China
| | - Jin Yao
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China.
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Bhanuprakash Reddy G, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. NANOSCALE 2018; 10:16485-16498. [PMID: 29897081 DOI: 10.1039/c8nr00058a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial manifestation associated with microvascular complications and is the fourth leading cause of visual impairment and blindness world-wide. Current day treatment of DR relies heavily on invasive techniques such as intravitreal injections of therapeutic agents. Unfortunately, intravitreal injections are associated with various complications such as intraocular bleeding, endophthalmitis, pain and discomfort resulting in poor patient compliance. To date, there has been no non-invasive drug delivery system reported for DR treatment. To address this, we developed a core-shell nanoparticle-based delivery system consisting of a hydrophobic polycaprolactone core and a hydrophilic Pluronic® F68 shell, loaded with triamcinolone acetonide and evaluated its efficacy in a DR rat model. After being administered as eye drops, the drug loaded nanoparticles significantly improved structural (retinal thickness and vascular health) and functional activity (rod and cone function) of retina as compared to DR controls that were treated with the drug alone or placebo nanoparticles. Furthermore, drug loaded nanoparticles reduced retinal inflammation as evidenced by a decrease in NF-κB, ICAM-1 and TNFα expression after 20 days of treatment. Similarly, a reduction in glial cell hyperplasia as evidenced by reduced GFAP expression, and a decrease in microvascular complications as evidenced by a decrease in VEGF secretion and microvascular tuft formation were observed in rat retinas after 40 days of treatment. The combined reduction in retinal inflammation and vascular abnormalities, both hallmarks of DR, demonstrates the potential of the nanoparticulate delivery system for use as a topical formulation for treating DR.
Collapse
Affiliation(s)
- Binapani Mahaling
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | | | | | | | | | | |
Collapse
|
25
|
Xie W, Song X, Liu Z. Impact of dipeptidyl-peptidase 4 inhibitors on cardiovascular diseases. Vascul Pharmacol 2018; 109:17-26. [PMID: 29879463 DOI: 10.1016/j.vph.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitor is a novel group of medicine employed in type 2 diabetes mellitus (T2DM),which improves meal stimulated insulin secretion by protecting glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) from enzymatic degradation. Cardiovascular diseases are serious complications and leading causes of mortality among individuals with diabetes mellitus. Glycemic control per se seems to fail in preventing the progression of diabetic cardiovascular complications. DPP-4 has the capability to inactivate not only incretins, but also a series of cytokines, chemokines, and neuropeptides involved in inflammation, immunity, and vascular function. Pre-clinical studies suggested that DPP-4 inhibitors may have potential cardiovascular protective effects in addition to their antidiabetic actions. In recent years, a number of clinical trials have been conducted to evaluate the effect of different DPP-4 inhibitors on the cardiovascular system. We herein review the available clinical studies in cardiovascular effects played by each DPP-4 inhibitor and discuss the prospective application of DPP-4 inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Weijia Xie
- Department of General Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China
| | - Xiaoxiao Song
- Department of Endocrinology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Street, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
26
|
Clermont A, Murugesan N, Zhou Q, Kita T, Robson PA, Rushbrooke LJ, Evans DM, Aiello LP, Feener EP. Plasma Kallikrein Mediates Vascular Endothelial Growth Factor-Induced Retinal Dysfunction and Thickening. Invest Ophthalmol Vis Sci 2017; 57:2390-9. [PMID: 27138737 PMCID: PMC4857835 DOI: 10.1167/iovs.15-18272] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Plasma kallikrein is a serine protease and circulating component of inflammation, which exerts clinically significant effects on vasogenic edema. This study examines the role of plasma kallikrein in VEGF-induced retinal edema. METHODS Intravitreal injections of VEGF and saline vehicle were performed in plasma prekallikrein-deficient (KLKB1-/-) and wild-type (WT) mice, and in both rats and mice receiving a selective plasma kallikrein inhibitor, VA999272. Retinal vascular permeability (RVP) and retinal thickness were measured by Evans blue permeation and optical coherence tomography, respectively. The retinal kallikrein kinin system was examined by Western blotting and immunohistochemistry. Retinal neovascularization was investigated in KLKB1-/- and WT mice subjected to oxygen-induced retinopathy. RESULTS Vascular endothelial growth factor-induced RVP and retinal thickening were reduced in KLKB1-/- mice by 68% and 47%, respectively, compared to VEGF responses in WT mice. Plasma kallikrein also contributes to TNFα-induced retinal thickening, which was reduced by 52% in KLKB1-/- mice. Systemic administration of VA999272 reduced VEGF-induced retinal thickening by 57% (P < 0.001) in mice and 53% (P < 0.001) in rats, compared to vehicle-treated controls. Intravitreal injection of VEGF in WT mice increased plasma prekallikrein in the retina, which was diffusely distributed throughout the inner and outer retinal layers. Avascular and neovascular areas induced by oxygen-induced retinopathy were similar in WT and KLKB1-/- mice. CONCLUSIONS Vascular endothelial growth factor increases extravasation of plasma kallikrein into the retina, and plasma kallikrein is required for the full effects of VEGF on RVP and retinal thickening in rodents. Systemic plasma kallikrein inhibition may provide a therapeutic opportunity to treat VEGF-induced retina edema.
Collapse
Affiliation(s)
- Allen Clermont
- Joslin Diabetes Center, Boston, Massachusetts, United States 2Beetham Eye Institute, Boston, Massachusetts, United States
| | | | - Qunfang Zhou
- Joslin Diabetes Center, Boston, Massachusetts, United States
| | - Takeshi Kita
- Joslin Diabetes Center, Boston, Massachusetts, United States
| | | | | | | | - Lloyd Paul Aiello
- Joslin Diabetes Center, Boston, Massachusetts, United States 2Beetham Eye Institute, Boston, Massachusetts, United States 4Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Edward P Feener
- Joslin Diabetes Center, Boston, Massachusetts, United States 5Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
27
|
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017; 173:1-18. [PMID: 28132907 DOI: 10.1016/j.pharmthera.2017.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide. Existing anti-VEGF agents, though generally effective, are limited by their short therapeutic half-lives, necessitating frequent intravitreal injections and the risk of attendant adverse events. Management of DR with gene therapies has been proposed for several years, and pre-clinical studies have yielded enticing findings. Gene therapy holds several advantages over conventional treatments for DR, such as a longer duration of therapeutic effect, simpler administration, the ability to intervene at an earlier stage of the disease, and potentially fewer side-effects. In this review, we summarize the current understanding of the pathophysiology of DR and provide an overview of research into DR gene therapies. We also examine current barriers to the clinical application of gene therapy for DR and evaluate future prospects for this approach.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| |
Collapse
|