1
|
Hsieh MS, Liu HW, Guo FY, Song DP, Li MY, Chao TY, Fong IH, Chang YS, Yeh CT. S-hydroxychloroquine prevents the antiphospholipid thrombogenic complexes for antiphospholipid syndrome treatment. Biomed Pharmacother 2025; 186:117968. [PMID: 40120554 DOI: 10.1016/j.biopha.2025.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Clinically used in systemic lupus erythematosus (SLE), Hydroxychloroquine (HCQ) exerts antithrombotic effects by inhibiting anti-β2-glycoprotein I (anti-β2GPI) antibody binding to phospholipid bilayers. However, HCQ is a racemic mixture, with only one enantiomer offering therapeutic benefits, while the other may contribute to toxicity. The current study evaluated the thromboprophylactic efficacy of R-enantiomer Hydroxychloroquine (R-HCQ), S-enantiomer Hydroxychloroquine (S-HCQ), and racemic HCQ (Rac-HCQ), with a focus on their impact on APS-associated markers. Both in vitro and in vivo models were employed, with human umbilical vein endothelial cells (HUVECs) and mice immunized with human β2-glycoprotein I antibodies used to evaluate the formation of antiphospholipid thrombotic complexes and their modulation by HCQ enantiomers. S-HCQ significantly reduced β2GPI complex binding and restored the AnxA5 anticoagulant shield in vitro, demonstrating superior efficacy over R-HCQ in disrupting β2GPI/anti-β2GPI interactions and preventing endothelial dysfunction in APS models. Pretreatment of HUVECs with S-HCQ significantly attenuated the expression of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and C-C motif ligand 2) and endothelial activation markers (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin). S-HCQ alleviates endothelial dysfunction by reducing proinflammatory cytokines, endothelial activation markers, and NO production while downregulating iNOS expression, highlighting its potential to mitigate oxidative stress and thrombogenic activity in APS-related endothelial damage. In vivo, S-HCQ effectively reduced clot formation in the femoral veins of APS mouse models. Among the HCQ enantiomers tested, S-HCQ demonstrated superior efficacy in modulating inflammatory and angiogenic pathways, influencing the formation of antiphospholipid thrombotic complexes and mitigating thrombosis. These findings underscore the potential of S-HCQ as a therapeutic alternative for APS management.
Collapse
Affiliation(s)
- Ming-Shou Hsieh
- Department of Medical Research & Education, Taipei Medical University- Shuang Ho Hospital, New Taipei 23561, Taiwan
| | - Heng-Wei Liu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Fu-You Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deng-Pan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Yuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Iat-Hang Fong
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University- Shuang Ho Hospital, New Taipei 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan.
| |
Collapse
|
2
|
Bonisoli GL, Argentino G, Friso S, Tinazzi E. Extracellular Vesicles Analysis as Possible Signatures of Antiphospholipid Syndrome Clinical Features. Int J Mol Sci 2025; 26:2834. [PMID: 40243411 PMCID: PMC11989148 DOI: 10.3390/ijms26072834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disease characterized by thrombosis and obstetric complications. Extracellular vesicles (EVs) of either platelet and endothelial origin are recognized to be involved in the pathophysiology of the disease. This study aimed to evaluate the potential role of endothelial- and platelet-derived extracellular vesicles and the clinical features or progression of APS. We enrolled 22 patients diagnosed with APS and 18 age and sex-matched healthy controls. We determined APS-specific antibody positivity and clinical manifestations in APS affected patients, with a focus on neurological, cardiovascular, dermatological, hematological manifestations, and pregnancy-related complications. Platelet-poor plasma was collected from either patients and controls for the analysis of EVs by flow cytometry technology using monoclonal antibodies to specifically identify those derived from either platelets and/or endothelial cells. EVs of endothelial and platelet origins were overall significantly increased in patients as compared to healthy controls. Furthermore, a significant association was also observed between the number of extracellular vesicles and specific organ involvement, particularly central nervous system manifestations, hematological abnormalities, and obstetric complications. An elevated proportion of endothelial-derived EVs in APS and a reduction of resting endothelial cell-derived EVs were observed in APS-affected women with obstetric complications. Our findings highlight the involvement of endothelial cells and platelets in mirroring the activities of endothelial cells and platelets in APS. Additionally, extracellular vesicles may serve as potential predictors of organ involvement and disease-related damage.
Collapse
Affiliation(s)
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
3
|
Fisher L, Ben-Shabat N, Gendelman O, Sharif K, Ehrenberg S, Shani U, Patt YS, Karra N, Watad A, Amital H, Cohen A, Dudkiewicz I. Risk of atherosclerosis-related diseases in polymyositis and dermatomyositis patients: A large-scale population-based study. Atherosclerosis 2025; 401:119100. [PMID: 39818113 DOI: 10.1016/j.atherosclerosis.2024.119100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AND AIMS Several systemic autoimmune diseases predispose to the enhancement of Atherosclerotic Cardiovascular Disease (ASCVD). These findings underline the role of inflammation in atherogenesis. Dermatomyositis (DM) and polymyositis (PM) are polygenic autoimmune disorders involving mainly skeletal muscles. The association between PM/DM and ASCVD has not been well addressed and explored. We aimed to investigate the association between PM/DM and ASCVD events, we examined the incidence, mortality, and interaction of disease-modifying agents, autoantibodies, and traditional cardiovascular disease (CVD) risk factors in a large population-based sample. METHODS We conducted a retrospective cohort study using the electronic database of Clalit Health Services (CHS), the largest health organization in Israel. All DM and PM patients diagnosed between 2000 and 2016 were included and matched with healthy controls by age and sex in a 1:5 ratio. Follow-up continued until the first diagnosis of ASCVD or death. The incidence of ASCVD was compared between the groups using univariate and multivariate models adjusting for baseline cardiovascular risk factors. RESULTS The study population included 1899 PM/DM patients and 7676 controls. The mean age at the index date was 32.5 years (SD ± 19 years), and the female proportion was 60.3 %, similar for both groups. Traditional cardiovascular risk factors were similar in both groups. The Median follow-up time was 8.4 years (3.6-12.8) in the PM/DM group compared to 8.6 (3.7-12.9) in the control group. 47 (3.0 %) PM/DM patients were diagnosed with ischemic heart disease (IHD) compared to 1.8 % (140) in the controls, yielding a multivariate HR (95%CI) of 1.61 (1.15-2.25). Multivariate HR for cerebrovascular accident (CVA) in the PM/DM group was (95%CI) 2.45 (1.63-3.70). Multivariate HR for ASCVD. (95%CI) was 1.75 (1.35-2.27) in the PM/DM group. APLA-associated antibodies presence was more associated with ASCVD among PM/DM groups than non-ASCVD PM and DM patients (OR 2.33, 95 % CI 1.41-3.86, p < 0.001). CONCLUSIONS Our study demonstrates that PM and DM are associated with an increased risk of IHD and CVA. Furthermore, PM and DM patients positive for APLA-associated antibodies exhibited excessive rates of ASCVD. These findings support the increased need for awareness and surveillance of cardiological, neuronal, and vascular outcomes in patients suffering from PM/DM.
Collapse
Affiliation(s)
- Lior Fisher
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Niv Ben-Shabat
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Gendelman
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Scott Ehrenberg
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Uria Shani
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yonatan Shneor Patt
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nour Karra
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abdulla Watad
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| | - Howard Amital
- Department of Internal Medicine B & Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arnon Cohen
- Chief Physician's Office, Clalit Health Services Tel Aviv, Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Israel Dudkiewicz
- Rehabilitation Division, Sheba Medical Center, Tel-Hashomer, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Richter P, Badescu MC, Rezus C, Ouatu A, Dima N, Popescu D, Burlui AM, Bratoiu I, Mihai IR, Rezus E. Antiphospholipid Antibodies as Key Players in Systemic Lupus Erythematosus: The Relationship with Cytokines and Immune Dysregulation. Int J Mol Sci 2024; 25:11281. [PMID: 39457063 PMCID: PMC11509045 DOI: 10.3390/ijms252011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by an overproduction of cytokines, such as interleukins and interferons, contributing to systemic inflammation and tissue damage. Antiphospholipid syndrome is a thrombo-inflammatory autoimmune disease affecting a third of SLE patients. We performed an in-depth analysis of the available literature, and we highlighted the complex interplay between immunity, inflammation, and thrombosis, the three major pathogenic pathways that are trapped in a mutually reinforcing destructive loop.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (P.R.); (A.M.B.); (I.B.); (I.R.M.); (E.R.)
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.O.); , (D.P.)
- IIIrd Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.O.); , (D.P.)
- IIIrd Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.O.); , (D.P.)
- IIIrd Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.O.); , (D.P.)
- IIIrd Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
| | - Diana Popescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.O.); , (D.P.)
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (P.R.); (A.M.B.); (I.B.); (I.R.M.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (P.R.); (A.M.B.); (I.B.); (I.R.M.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (P.R.); (A.M.B.); (I.B.); (I.R.M.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (P.R.); (A.M.B.); (I.B.); (I.R.M.); (E.R.)
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| |
Collapse
|
5
|
Feng W, Qiao J, Tan Y, Liu Q, Wang Q, Yang B, Yang S, Cui L. Interaction of antiphospholipid antibodies with endothelial cells in antiphospholipid syndrome. Front Immunol 2024; 15:1361519. [PMID: 39044818 PMCID: PMC11263079 DOI: 10.3389/fimmu.2024.1361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous thrombosis and recurrent miscarriages as the main clinical manifestations. Due to the complexity of its mechanisms and the diversity of its manifestations, its diagnosis and treatment remain challenging issues. Antiphospholipid antibodies (aPL) not only serve as crucial "biomarkers" in diagnosing APS but also act as the "culprits" of the disease. Endothelial cells (ECs), as one of the core target cells of aPL, bridge the gap between the molecular level of these antibodies and the tissue and organ level of pathological changes. A more in-depth exploration of the relationship between ECs and the pathogenesis of APS holds the potential for significant advancements in the precise diagnosis, classification, and therapy of APS. Many researchers have highlighted the vital involvement of ECs in APS and the underlying mechanisms governing their functionality. Through extensive in vitro and in vivo experiments, they have identified multiple aPL receptors on the EC membrane and various intracellular pathways. This article furnishes a comprehensive overview and summary of these receptors and signaling pathways, offering prospective targets for APS therapy.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
6
|
Calvier L, Alexander A, Marckx AT, Kounnas MZ, Durakoglugil M, Herz J. Safety of Anti-Reelin Therapeutic Approaches for Chronic Inflammatory Diseases. Cells 2024; 13:583. [PMID: 38607022 PMCID: PMC11011630 DOI: 10.3390/cells13070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Reelin, a large extracellular glycoprotein, plays critical roles in neuronal development and synaptic plasticity in the central nervous system (CNS). Recent studies have revealed non-neuronal functions of plasma Reelin in inflammation by promoting endothelial-leukocyte adhesion through its canonical pathway in endothelial cells (via ApoER2 acting on NF-κB), as well as in vascular tone regulation and thrombosis. In this study, we have investigated the safety and efficacy of selectively depleting plasma Reelin as a potential therapeutic strategy for chronic inflammatory diseases. We found that Reelin expression remains stable throughout adulthood and that peripheral anti-Reelin antibody treatment with CR-50 efficiently depletes plasma Reelin without affecting its levels or functionality within the CNS. Notably, this approach preserves essential neuronal functions and synaptic plasticity. Furthermore, in mice induced with experimental autoimmune encephalomyelitis (EAE), selective modulation of endothelial responses by anti-Reelin antibodies reduces pathological leukocyte infiltration without completely abolishing diapedesis. Finally, long-term Reelin depletion under metabolic stress induced by a Western diet did not negatively impact the heart, kidney, or liver, suggesting a favorable safety profile. These findings underscore the promising role of peripheral anti-Reelin therapeutic strategies for autoimmune diseases and conditions where endothelial function is compromised, offering a novel approach that may avoid the immunosuppressive side effects associated with conventional anti-inflammatory therapies.
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Austin T. Marckx
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Murat Durakoglugil
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA (A.T.M.); (M.D.); (J.H.)
- Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Riitano G, Capozzi A, Recalchi S, Augusto M, Conti F, Misasi R, Garofalo T, Sorice M, Manganelli V. Role of Lipid Rafts on LRP8 Signaling Triggered by Anti-β2-GPI Antibodies in Endothelial Cells. Biomedicines 2023; 11:3135. [PMID: 38137358 PMCID: PMC10740635 DOI: 10.3390/biomedicines11123135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Antiphospholipid antibody syndrome is an autoimmune disease characterized by thrombosis and/or pregnancy morbidity in association with circulating antiphospholipid antibodies, mainly anti-β2 glycoprotein 1 antibodies (anti-β2-GPI antibodies). Previous studies demonstrated that the signaling pathway may involve lipid rafts, plasma membrane microdomains enriched in glycosphingolipid and cholesterol. In this study, we analyzed the signaling pathway of LRP8/ApoER2, a putative receptor of anti-β2-GPI antibodies, through lipid rafts in human endothelial cells. LRP8, Dab2 and endothelial nitric oxide synthase (e-NOS) phosphorylation were evaluated using Western blot, Nitric Oxide (NO) production with cytofluorimetric analysis, LRP8 enrichment in lipid rafts via sucrose gradient fractionation, and scanning confocal microscopy analysis of its association with ganglioside GM1 was also conducted. The analyses demonstrated that affinity-purified anti-β2-GPI antibodies induced LRP8 and Dab-2 phosphorylation, together with a significant decrease in e-NOS phosphorylation, with consequent decrease in NO intracellular production. These effects were almost completely prevented by Methyl-β-cyclodextrin (MβCD), indicating the involvement of lipid rafts. It was supported with the observation of LRP8 enrichment in lipid raft fractions and its association with ganglioside GM1, detected with scanning confocal microscopy. These findings demonstrate that LRP8 signaling triggered by anti-β2-GPI antibodies in endothelial cells occurs through lipid rafts. It represents a new task for valuable therapeutic approaches, such as raft-targeted therapy, including cyclodextrins and statins.
Collapse
Affiliation(s)
- Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | | | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| |
Collapse
|
8
|
Qin R, Wu H, Guan H, Tang C, Zheng Z, Deng C, Chen C, Zou Q, Lu L, Ma K. Anti-phospholipid autoantibodies in human diseases. Clin Immunol 2023; 256:109803. [PMID: 37821073 DOI: 10.1016/j.clim.2023.109803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Anti-phospholipid autoantibodies are a group of antibodies that can specifically bind to anionic phospholipids and phospholipid protein complexes. Recent studies have reported elevated serum anti-phospholipid autoantibody levels in patients with antiphospholipid syndrome, systemic lupus erythematosus, rheumatoid arthritis, metabolic disorders, malaria, SARS-CoV-2 infection, obstetric diseases and cardiovascular diseases. However, the underlying mechanisms of anti-phospholipid autoantibodies in disease pathogenesis remain largely unclear. Emerging evidence indicate that anti-phospholipid autoantibodies modulate NETs formation, monocyte activation, blockade of apoptotic cell phagocytosis in macrophages, complement activation, dendritic cell activation and vascular endothelial cell activation. Herein, we provide an update on recent advances in elucidating the effector mechanisms of anti-phospholipid autoantibodies in the pathogenesis of various diseases, which may facilitate the development of potential therapeutic targets for the treatment of anti-phospholipid autoantibody-related disorders.
Collapse
Affiliation(s)
- Rencai Qin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Haiqi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hui Guan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chun Tang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhihua Zheng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China
| | - Chengshun Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China.
| | - Kongyang Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Centre for Infection and Immunity Studies (CIIS), School of Medicine, The Seventh Affiliated Hospital, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
9
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Zhu J, Jin J, Qi Q, Li L, Zhou J, Cao L, Wang L. The association of gut microbiome with recurrent pregnancy loss: A comprehensive review. Drug Discov Ther 2023; 17:157-169. [PMID: 37357394 DOI: 10.5582/ddt.2023.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The steady-state gut microbiome not only promotes the metabolism and absorption of nutrients that are difficult to digest by the host itself, but also participates in systemic metabolism. Once the dynamic balance is disturbed, the gut microbiome may lead to a variety of diseases. Recurrent pregnancy loss (RPL) affects 1-2% of women of reproductive age, and its prevalence has increased in recent years. According to the literature review, the gut microbiome is a new potential driver of the pathophysiology of recurrent abortion, and the gut microbiome has emerged as a new candidate for clinical prevention and treatment of RPL. However, few studies have concentrated on the direct correlation between RPL and the gut microbiome, and the mechanisms by which the gut microbiome influences recurrent miscarriage need further investigation. In this review, the effects of the gut microbiome on RPL were discussed and found to be associated with inflammatory response, the disruption of insulin signaling pathway and the formation of insulin resistance, maintenance of immunological tolerance at the maternal-fetal interface due to the interference with the immune imbalance of Treg/Th17 cells, and obesity.
Collapse
Affiliation(s)
- Jun Zhu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiaxi Jin
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
| | - Liwen Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
11
|
Favaloro EJ, Pasalic L. An Overview of Laboratory Testing for Antiphospholipid Antibodies. Methods Mol Biol 2023; 2663:253-262. [PMID: 37204715 DOI: 10.1007/978-1-0716-3175-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antiphospholipid antibodies (aPL) represent a group of autoantibodies directed against phospholipids. These antibodies may arise in a number of autoimmune conditions, of which the antiphospholipid (antibody) syndrome (APS) is best recognized. aPL can be detected by various laboratory assays, essentially comprising both solid-phase (immunological) assays and "liquid-phase" clotting assays identifying so-called lupus anticoagulants (LA). aPL are associated with various adverse pathologies, including thrombosis and placental/fetal morbidity and mortality. The type of aPL present, as well as the pattern of reactivity, is variously associated with the severity of the pathology. Thus, laboratory testing for aPL is indicated to help assess the future risk of such events, as well as representing certain "classification" criteria for APS, also used as surrogates for diagnostic criteria. The current chapter overviews the laboratory tests available to measure aPL and their potential clinical utility.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- School of Medical Sciences, Faculty of Medicine and Health University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, Wagga, NSW, Australia.
| | - Leonardo Pasalic
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
12
|
Islabão AG, Trindade VC, da Mota LMH, Andrade DCO, Silva CA. Managing Antiphospholipid Syndrome in Children and Adolescents: Current and Future Prospects. Paediatr Drugs 2022; 24:13-27. [PMID: 34904182 PMCID: PMC8667978 DOI: 10.1007/s40272-021-00484-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
Pediatric antiphospholipid syndrome (APS) is a rare acquired multisystem autoimmune thromboinflammatory condition characterized by thrombotic and non-thrombotic clinical manifestations. APS in children and adolescents typically presents with large-vessel thrombosis, thrombotic microangiopathy, and, rarely, obstetric morbidity. Non-thrombotic clinical manifestations are frequently seen in pediatric APS and may be present even before the vascular thrombotic events occur. We review insights into the pathogenesis of APS and discuss potential targets for therapy. The identification of multiple immunologic abnormalities in patients with APS reveals molecular targets for current or future treatment. Management strategies, especially for APS in adolescents, require screening for additional prothrombotic risk factors and consideration of counseling regarding contraceptive strategies, lifestyle recommendations, treatment adherence, and mental health issues associated with this autoimmune thrombophilia. The main goal of therapy in pediatric APS is the prevention of thrombosis. The management of acute thrombosis events in children and adolescents is the same as for primary APS, which involves isolated occurrences, and secondary APS, which is seen in association with another autoimmune disease, e.g., systemic lupus erythematosus. A pediatric hematologist should be consulted so other differential thrombophilic conditions can be eliminated. Therapy includes unfractionated heparin or low-molecular-weight heparin followed by vitamin K antagonists. Treatment of catastrophic APS involves triple therapy (anticoagulation, intravenous corticosteroid pulse therapy, and plasma exchange) and may include intravenous immunoglobulin for children and adolescents with this condition. New drugs such as eculizumab and sirolimus seem to be promising drugs for APS.
Collapse
Affiliation(s)
- Aline Garcia Islabão
- Pediatric Rheumatology Unit, Hospital da Criança de Brasília Jose Alencar, Brasília, DF Brazil ,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil
| | - Vitor Cavalcanti Trindade
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP 05403-000 Brazil
| | - Licia Maria Henrique da Mota
- Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF Brazil ,Rheumatology Unit, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil
| | | | - Clovis Artur Silva
- Faculdade de Medicina, Children and Adolescent Institute, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647-Cerqueira César, São Paulo, SP, 05403-000, Brazil. .,Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Al-Gburi S, Beissert S, Günther C. Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biol Chem 2021; 402:1505-1518. [PMID: 34657406 DOI: 10.1515/hsz-2021-0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Beissert
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Claudia Günther
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
14
|
Proteomics and enriched biological processes in Antiphospholipid syndrome: A systematic review. Autoimmun Rev 2021; 20:102982. [PMID: 34718168 DOI: 10.1016/j.autrev.2021.102982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022]
Abstract
Identification of differentially expressed proteins in antiphospholipid syndrome (APS) is a developing area of research for unique profiles of this pathology. Advances in technologies of mass spectrometry brings improvements in proteomics and results in assessment of soluble or cellular proteins which could be candidates for clinical biomarkers of primary APS. The use of blood as a source of proteins ease the acquisition of samples for proteomics analyses and later for disease diagnosis. We performed a systematic review to explore the proteomics studies carried out in circulating released proteins (serum, plasma) or cellular proteins (monocytes and platelets) of APS patients. The study groups differentiate among clinical APS cases with the aim to translate molecular findings to disease stratification and to improve APS diagnosis and prognosis. These studies also include the unravelling of new autoantibodies in non-criteria APS or how post-translational protein modifications provides clues about the pathological mechanisms of antigen-autoantibody recognition. Herein, we identified 82 proteins that were dysregulated in APS across eleven studies. Enrichment analysis revealed its connection to cellular activation and degranulation that eventually leads to thrombosis as the main biological process highlighted by these studies. Validation of APS-relevant proteins by functional and mechanistic studies will be essential for patient stratification and the development of targeted therapies for every clinical subtype of APS.
Collapse
|
15
|
Hysa E, Cutolo CA, Gotelli E, Paolino S, Cimmino MA, Pacini G, Pizzorni C, Sulli A, Smith V, Cutolo M. Ocular microvascular damage in autoimmune rheumatic diseases: The pathophysiological role of the immune system. Autoimmun Rev 2021; 20:102796. [PMID: 33722750 DOI: 10.1016/j.autrev.2021.102796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Pathological eye involvement represents a quite common finding in a broad spectrum of autoimmune rheumatic diseases (ARDs). Ocular signs, often occur as early manifestations in ARDs, ranging from symptoms related to the mild dry eye disease to sight-threatening pathologies, linked to the immune response against retinal and choroidal vessels. Retinovascular damage driven by markedly inflammatory reactivity need a prompt diagnosis and treatment. Immune-complexes formation, complement activation and antibody-mediated endothelial damage seem to play a key role, particularly, in microvascular damage and ocular symptoms, occurring in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SS). Conversely, early alterations of retinal and choroidal vessels in the asymptomatic patient, often detectable coincidentally, might be indicators of widespread vascular injury in other connective tissue diseases. Particularly, endothelin-induced hypoperfusion and pathological peri-choroidal extracellular matrix deposition, might be responsible for the micro-architectural alterations and loss of capillaries detected in systemic sclerosis (SSc). Instead, interferon alpha-mediated microvascular rarefaction, combined with endothelial lesions caused by specific autoantibodies and immune-complexes, appear to play a significant role in retinal vasculopathy associated to inflammatory idiopathic myopathies (IIM). The immuno-pathophysiological mechanisms of ocular microcirculatory damage associated with the major ARDs will be discussed under the light of the most recent achievements.
Collapse
Affiliation(s)
- Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Ophtalmology Clinic DiNOGMI, University of Genoa, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Marco Amedeo Cimmino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Greta Pacini
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy - IRCCS Rheumatology Unit San Martino Polyclinic, Genoa, Italy.
| |
Collapse
|
16
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
17
|
Barinotti A, Radin M, Cecchi I, Foddai SG, Rubini E, Roccatello D, Sciascia S, Menegatti E. Genetic Factors in Antiphospholipid Syndrome: Preliminary Experience with Whole Exome Sequencing. Int J Mol Sci 2020; 21:E9551. [PMID: 33333988 PMCID: PMC7765384 DOI: 10.3390/ijms21249551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
As in many autoimmune diseases, the pathogenesis of the antiphospholipid syndrome (APS) is the result of a complex interplay between predisposing genes and triggering environmental factors, leading to a loss of self-tolerance and immune-mediated tissue damage. While the first genetic studies in APS focused primarily on the human leukocytes antigen system (HLA) region, more recent data highlighted the role of other genes in APS susceptibility, including those involved in the immune response and in the hemostatic process. In order to join this intriguing debate, we analyzed the single-nucleotide polymorphisms (SNPs) derived from the whole exome sequencing (WES) of two siblings affected by APS and compared our findings with the available literature. We identified genes encoding proteins involved in the hemostatic process, the immune response, and the phospholipid metabolism (PLA2G6, HSPG2, BCL3, ZFAT, ATP2B2, CRTC3, and ADCY3) of potential interest when debating the pathogenesis of the syndrome. The study of the selected SNPs in a larger cohort of APS patients and the integration of WES results with the network-based approaches will help decipher the genetic risk factors involved in the diverse clinical features of APS.
Collapse
Affiliation(s)
- Alice Barinotti
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Silvia Grazietta Foddai
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| | - Elena Rubini
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital and University of Turin, 10154 Turin, Italy
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Nephrology and Dialysis, Department of Clinical and Biological Sciences, S. Giovanni Bosco Hospital and University of Turin, 10154 Turin, Italy
| | - Elisa Menegatti
- Center of Research of Immunopathology and Rare Diseases—Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, 10154 Turin, Italy; (A.B.); (M.R.); (I.C.); (S.G.F.); (E.R.); (D.R.); (E.M.)
- Department of Clinical and Biological Sciences, School of Specialization of Clinical Pathology, University of Turin, 10125 Turin, Italy
| |
Collapse
|
18
|
Mao-Draayer Y, Thiel S, Mills EA, Chitnis T, Fabian M, Katz Sand I, Leite MI, Jarius S, Hellwig K. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. Nat Rev Neurol 2020; 16:154-170. [PMID: 32080393 DOI: 10.1038/s41582-020-0313-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are a type of neurological autoimmune disease characterized by attacks of CNS inflammation that are often severe and predominantly affect the spinal cord and optic nerve. The majority of individuals with NMOSD are women, many of whom are of childbearing age. Although NMOSD are rare, several small retrospective studies and case reports have indicated that pregnancy can worsen disease activity and might contribute to disease onset. NMOSD disease activity seems to negatively affect pregnancy outcomes. Moreover, some of the current NMOSD treatments are known to pose risks to the developing fetus and only limited safety data are available for others. Here, we review published studies regarding the relationship between pregnancy outcomes and NMOSD disease activity. We also assess the risks associated with using disease-modifying therapies for NMOSD during the course of pregnancy and breastfeeding. On the basis of the available evidence, we offer recommendations regarding the use of these therapies in the course of pregnancy planning in individuals with NMOSD.
Collapse
Affiliation(s)
- Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sandra Thiel
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, MA, USA
| | - Michelle Fabian
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
19
|
Oxidative stress in endothelial cells induced by the serum of women with different clinical manifestations of the antiphospholipid syndrome. ACTA ACUST UNITED AC 2019; 39:673-688. [PMID: 31860179 PMCID: PMC7363350 DOI: 10.7705/biomedica.4701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 12/27/2022]
Abstract
Introducción. El síndrome antifosfolípido se caracteriza por la presencia persistente de anticuerpos antifosfolípidos y manifestaciones clínicas de trombosis o morbilidad gestacional, las cuales se asocian con estrés oxidativo y disfunción endotelial. Objetivo. Evaluar los marcadores de estrés oxidativo en células endoteliales, inducidos por el suero de mujeres con diferentes manifestaciones clínicas del síndrome antifosfolípido y analizar la capacidad antioxidante de los sueros. Materiales y métodos. Se incluyeron 48 mujeres que fueron clasificadas así: presencia de anticuerpos antifosfolípidos y criterios clínicos de morbilidad gestacional, trombosis vascular o ambas. Como grupos control se incluyeron mujeres negativas para anticuerpos antifosfolípidos. En un modelo in vitro de células endoteliales estimuladas con los sueros de las mujeres del estudio, se determinaron algunos marcadores de estrés oxidativo por citometría de flujo. También, se analizó la capacidad antioxidante de los sueros incluidos. Resultados. Los sueros de los grupos de mujeres con síndrome antifosfolípido que presentaban trombosis, con morbilidad gestacional o sin ella, generaron un incremento significativo (p<0,05 y p<0,001) en los marcadores de estrés oxidativo endotelial, en contraste con el control de suero humano normal. No se observaron diferencias en el efecto de los sueros de los diferentes grupos de estudio sobre la lipoperoxidación endotelial. Tampoco se encontró diferencia en la actividad antioxidante de los sueros. Conclusión. El estrés oxidativo mitocondrial en el endotelio se asocia con la presencia de trombosis. Sin embargo, cuando esta se asocia con morbilidad gestacional, también se genera estrés oxidativo intracelular.
Collapse
|
20
|
Changes of platelet count throughout pregnancy in women with antiphospholipid syndrome. J Reprod Immunol 2019; 136:102612. [PMID: 31542513 DOI: 10.1016/j.jri.2019.102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Antiphospholipid antibodies (aPL) activate several cell types, such as endothelial cells, monocytes, neutrophils, fibroblasts, trophoblasts and platelets, thus leading to thrombosis and obstetric complications in patients with antiphospholipid syndrome (APS). The aim of the present study was the longitudinal investigation of platelet count in women with APS. Additionally, platelet count in women with APS who developed preeclampsia during pregnancy were compared to women with APS and uncomplicated pregnancy for potential early detection of preeclampsia. MATERIAL AND METHODS This longitudinal study included 65 women with APS, 38 women with preeclampsia and 84 women with normal pregnancies, where platelet count was determined every four weeks, starting in early pregnancy. RESULTS Platelet count was significantly lower in women with APS compared to women who developed preeclampsia and normal pregnancies starting at 12 weeks of gestation. The areas under the curve (AUC) for platelet count were 0.765 at 12 weeks of gestation (95% of CI of 0.634-0.896), 0.747 at 20 weeks (95% of CI of 0.600-0.894), 0.719 at 24 weeks (95% of CI of 0.555-0.882), respectively. The cut off points for platelets were 216 at 12-14 weeks of gestation, 226.5 at 20 weeks of gestation, and 163.5 at 24 weeks of gestation, respectively. DISCUSSION We demonstrated a significant lower platelet count in women with APS throughout gestation. Additionally, platelet count is significantly decreased in women with APS who developed preeclampsia. According to our results, platelet count seems to have a predictive value for the development of preeclampsia in these women.
Collapse
|
21
|
Velásquez M, Rojas M, Abrahams VM, Escudero C, Cadavid ÁP. Mechanisms of Endothelial Dysfunction in Antiphospholipid Syndrome: Association With Clinical Manifestations. Front Physiol 2018; 9:1840. [PMID: 30627104 PMCID: PMC6309735 DOI: 10.3389/fphys.2018.01840] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The endothelium is a monolayer of cells that covers the inner surface of blood vessels and its integrity is essential for the maintenance of vascular health. Endothelial dysfunction is a key pathological component of antiphospholipid syndrome (APS). Its systemic complications include thrombotic endocarditis, valvular dysfunction, cerebrovascular occlusions, proliferative nephritis, deep vein thrombosis, and pulmonary embolism. In women, APS is also associated with pregnancy complications (obstetric APS). The conventional treatment regimens for APS are ineffective when the clinical symptoms are severe. Therefore, a better understanding of alterations in the endothelium caused by antiphospholipid antibodies (aPL) may lead to more effective therapies in patients with elevated aPL titers and severe clinical symptoms. Currently, while in vivo analyses of endothelial dysfunction in patients with APS have been reported, most research has been performed using in vitro models with endothelial cells exposed to either patient serum/plasma, monoclonal aPL, or IgGs isolated from patients with APS. These studies have described a reduction in endothelial cell nitric oxide synthesis, the induction of inflammatory and procoagulant phenotypes, an increase in endothelial proliferation, and impairments in vascular remodeling and angiogenesis. Despite these lines of evidence, further research is required to better understand the pathophysiology of endothelial dysfunction in patients with APS. In this review, we have compared the current understanding about the mechanisms of endothelial dysfunction induced by patient-derived aPL under the two main clinical manifestations of APS: thrombosis and gestational complications, either alone or in combination. We also discuss gaps in our current knowledge regarding aPL-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Manuela Velásquez
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Escuela de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Coordinador Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Carlos Escudero
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo, Chillan, Chile
| | - Ángela P Cadavid
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Escuela de Medicina, Universidad de Antioquia, Medellín, Colombia.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo, Chillan, Chile
| |
Collapse
|
22
|
Gerardi MC, Fernandes MA, Tincani A, Andreoli L. Obstetric Anti-phospholipid Syndrome: State of the Art. Curr Rheumatol Rep 2018; 20:59. [PMID: 30105597 DOI: 10.1007/s11926-018-0772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This review focuses on new pathogenesis and clinical-therapeutic aspects of obstetric anti-phospholipid syndrome (ob-APS) in the last 5 years. RECENT FINDINGS The pathogenesis of ob-APS is multifactorial, including placental infarctions, infiltration of inflammatory cells that cause acute and chronic inflammation, leading to uncontrolled inflammation and poor pregnancy outcomes. A preconception counseling and a patient-tailored treatment are fundamental to improve maternal and fetal outcomes. Thanks to conventional treatment, based on low-dose aspirin and heparin, 70% of women with ob-APS can have successful pregnancies. Women with positive anti-phospholipid antibodies (aPL) without clinical manifestations ("aPL carriers") or with obstetric manifestation not fulfilling ob-APS criteria need to be further investigated in order to assess their best management. Great interest has been given to drugs that could interact in the pathophysiological mechanisms, such as hydroxychloroquine, statins, and eculizumab. These drugs could be considered for patients refractory to conventional therapy.
Collapse
Affiliation(s)
- Maria Chiara Gerardi
- Rheumatology and Clinical Immunology Unit and Department of Clinical and Experimental Sciences, Spedali Civili and University of Brescia, Brescia, Italy
| | - Melissa Alexandre Fernandes
- Autoimmune Disease Unit-Department of Internal Medicine, Hospital Curry Cabral/Centro Hospitalar Lisboa Central, Lisbon, Portugal
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit and Department of Clinical and Experimental Sciences, Spedali Civili and University of Brescia, Brescia, Italy
| | - Laura Andreoli
- Rheumatology and Clinical Immunology Unit and Department of Clinical and Experimental Sciences, Spedali Civili and University of Brescia, Brescia, Italy.
| |
Collapse
|