1
|
Tomioka R, Aihara Y, Tsukahara K. A Case of Ear Canal Cancer with a High Venous Arch That Benefited from an Intraoperative Navigation System. Case Rep Oncol 2025; 18:68-75. [PMID: 39980513 PMCID: PMC11731905 DOI: 10.1159/000542927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/23/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Cancers of the external auditory canal are rare. Surgery may be the treatment of choice for localized cases. Lateral temporal bone resection is one surgical treatment option. It is rarely performed by skilled surgeons and requires caudal and anterior cutting of the tympanic chamber bone, which is not usually performed in ear surgery. It is imperative to ensure that the internal jugular vein and important nerves are present. Case Presentation In this report, we describe a case of adenoid cystic carcinoma of the external auditory canal in which lateral temporal bone resection was safely performed using intraoperative navigation. A 33-year-old woman was diagnosed with an adenoid cystic carcinoma of the right external auditory canal by another physician and presented to our department. After close examination, she was diagnosed with T3N0M0 cancer of the external auditory canal and was referred to our department for lateral temporal bone resection. Although the patient had a high venous arch, intraoperative navigation enabled unblocked resection without exposing the tumor or damaging the vital tissues. Conclusion Intraoperative navigation is considered a safer lateral temporal bone resection approach.
Collapse
Affiliation(s)
- Ryota Tomioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Aihara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Yamano A, Matsuda M, Ishikawa E. Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors. Cancers (Basel) 2024; 17:62. [PMID: 39796691 PMCID: PMC11719745 DOI: 10.3390/cancers17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Skull base tumors such as meningiomas and schwannomas are often pathologically benign. However, surgery for these tumors poses significant challenges because of their proximity to critical structures such as the brainstem, cerebral arteries, veins, and cranial nerves. These structures are compressed or encased by the tumor as they grow, increasing the risk of unintended injury to these structures, which can potentially lead to severe neurological deficits. Preoperative imaging is crucial for assessing the tumor size, location, and its relationship with adjacent vital structures. This study reviews advanced imaging techniques that allow detailed visualization of vascular structures and cranial nerves. Contrast-enhanced computed tomography and digital subtraction angiography are optimal for evaluating vascular structures, whereas magnetic resonance imaging (MRI) with high-resolution T2-weighted images and diffusion tensor imaging are optimal for evaluating cranial nerves. These methods help surgeons plan tumor resection strategies, including surgical approaches, more precisely. An accurate preoperative assessment can contribute to safe tumor resection and preserve neurological function. Additionally, we report the MRI contrast defect sign in skull base meningiomas, which suggests cranial nerve penetration through the tumor. This is an essential finding for inferring the course of cranial nerves completely encased within the tumor. These preoperative imaging techniques have the potential to improve the outcomes of patients with skull base tumors. Furthermore, this study highlights the importance of multimodal imaging approaches and discusses future directions for imaging technology that could further develop preoperative surgical simulations and improve the quality of complex skull base tumor surgeries.
Collapse
Affiliation(s)
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | | |
Collapse
|
3
|
Tzelnick S, Rampinelli V, Sahovaler A, Franz L, Chan HHL, Daly MJ, Irish JC. Skull-Base Surgery-A Narrative Review on Current Approaches and Future Developments in Surgical Navigation. J Clin Med 2023; 12:2706. [PMID: 37048788 PMCID: PMC10095207 DOI: 10.3390/jcm12072706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Surgical navigation technology combines patient imaging studies with intraoperative real-time data to improve surgical precision and patient outcomes. The navigation workflow can also include preoperative planning, which can reliably simulate the intended resection and reconstruction. The advantage of this approach in skull-base surgery is that it guides access into a complex three-dimensional area and orients tumors intraoperatively with regard to critical structures, such as the orbit, carotid artery and brain. This enhances a surgeon's capabilities to preserve normal anatomy while resecting tumors with adequate margins. The aim of this narrative review is to outline the state of the art and the future directions of surgical navigation in the skull base, focusing on the advantages and pitfalls of this technique. We will also present our group experience in this field, within the frame of the current research trends.
Collapse
Affiliation(s)
- Sharon Tzelnick
- Division of Head and Neck Surgery, Princess Margaret Cancer Center, University of Toronto, Toronto, ON M5G 2M9, Canada
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Vittorio Rampinelli
- Unit of Otorhinolaryngology—Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
- Technology for Health (PhD Program), Department of Information Engineering, University of Brescia, 25121 Brescia, Italy
| | - Axel Sahovaler
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Head & Neck Surgery Unit, University College London Hospitals, London NW1 2PG, UK
| | - Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, 35122 Padua, Italy
| | - Harley H. L. Chan
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Michael J. Daly
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Jonathan C. Irish
- Division of Head and Neck Surgery, Princess Margaret Cancer Center, University of Toronto, Toronto, ON M5G 2M9, Canada
- Guided Therapeutics (GTx) Program, TECHNA Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
4
|
Micko A, Minchev G, Wurzer A, Kronreif G, Wolfsberger S. A Patient-Specific Reference Tracker for Noninvasive Electromagnetic Navigation of Endoscopic Skull Base Surgery. Oper Neurosurg (Hagerstown) 2022; 23:499-504. [DOI: 10.1227/ons.0000000000000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
|
5
|
Zagzoog N, Rastgarjazi S, Ramjist J, Lui J, Hopfgartner A, Jivraj J, Yeretsian T, Zadeh G, Lin V, Yang VXD. Pilot Study of Optical Topographic Imaging Based Neuronavigation for Mastoidectomy. World Neurosurg 2022; 166:e790-e798. [PMID: 35953033 DOI: 10.1016/j.wneu.2022.07.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mastoidectomy involves drilling the temporal bone while avoiding the facial nerve, semicircular canals, sigmoid sinus, and tegmen. Optical topographic imaging (OTI) is a novel registration technique that allows rapid registration with minimal navigational error. To date, no studies have examined the use of OTI in skull-base procedures. METHODS In this cadaveric study, 8 mastoidectomies were performed in 2 groups-4 free-hand (FH) and 4 OTI-assisted mastoidectomies. Registration accuracy for OTI navigation was quantified with root mean square (RMS) and target registration error (TRE). Procedural time, percent of mastoid resected, and the proximity of the mastoidectomy cavity to critical structures were determined. RESULTS The average RMS and TRE associated with OTI-based registration were 1.44 mm (±0.83 mm) and 2.17 mm (±0.89 mm), respectively. The volume removed, expressed as a percentage of the total mastoid volume, was 37.5% (±10.2%) versus 31.2% (±2.3%), P = 0.31, for FH and OTI-assisted mastoidectomy. There were no statistically significant differences between FH and OTI-assisted mastoidectomies with respect to proximity to critical structures or procedural time. CONCLUSIONS This work is the first examining the application of OTI neuronavigation in lateral skull-base procedures. This pilot study revealed the RMS and TRE for OTI-based navigation in the lateral skull base are 1.44 mm (±0.83 mm) and 2.17 mm (±0.89 mm), respectively. This pilot study demonstrates that an OTI-based system is sufficiently accurate and may address barriers to widespread adoption of navigation for lateral skull-base procedures.
Collapse
Affiliation(s)
- Nirmeen Zagzoog
- Institute of Medical Science, School of Graduate Studies, Faculty of Medicine, Toronto, Ontario, Canada; Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada; Bioengineering and Biophotonics Laboratory, Ryerson University, Toronto, Ontario, Canada.
| | - Siavash Rastgarjazi
- Bioengineering and Biophotonics Laboratory, Ryerson University, Toronto, Ontario, Canada
| | - Joel Ramjist
- Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Bioengineering and Biophotonics Laboratory, Ryerson University, Toronto, Ontario, Canada
| | - Justin Lui
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Division of Otolaryngology, Head and Neck Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Adam Hopfgartner
- Orthopedic Biomechanics Laboratory, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jamil Jivraj
- Bioengineering and Biophotonics Laboratory, Ryerson University, Toronto, Ontario, Canada
| | - Tiffany Yeretsian
- Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Vincent Lin
- Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Victor X D Yang
- Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Bioengineering and Biophotonics Laboratory, Ryerson University, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zagzoog N, Zadeh G, Lin V, Yang VXD. Perspective review on applications of optics in skull base surgery. Clin Neurol Neurosurg 2021; 212:107085. [PMID: 34894572 DOI: 10.1016/j.clineuro.2021.107085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
The use of optic technology in skull base surgeries has the potential to revolutionize the field of medicine, particularly neurosurgery and neurology. Here, we briefly present the past, present, and future of skull-base surgery, with an emphasis on the applications of optical topography techniques. We discuss optical topography techniques such as functional near-infrared spectroscopy, optical diffusion tomography, and optical topographical imaging. Optical topography techniques are particularly advantageous when combined with other imaging methods. For instance, optical topography can be combined with techniques such as functional magnetic resonance imaging (fMRI) to combine the temporal resolution of optical topography with the spatial resolution of fMRI. Multimodal approaches will be critical to advance brain-related research as well as medicine. Structured light imaging techniques are also writing the future of 3-dimensional imaging. In short, optical topography can allow for non-invasive, high-resolution imaging that will provide real-time visualizations of the brain that are ideal for neurosurgery. From the limitations of traditional skull base surgeries to the newest developments in optical neuroimaging, here we will discuss the potential applications of optics in skull base procedures.
Collapse
Affiliation(s)
- Nirmeen Zagzoog
- Institute of Medical Science, School of Graduate Studies, Faculty of Medicine, Toronto, Ontario, Canada; Sunnybrook Health Sciences Centre, Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Vincent Lin
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Otolaryngology - Head and Neck Surgery, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Victor X D Yang
- Sunnybrook Health Sciences Centre, Brain Sciences Program/Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Ryerson University, Bioengineering and Biophotonics Laboratory, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Neves CA, Leuze C, Gomez AM, Navab N, Blevins N, Vaisbuch Y, McNab JA. Augmented Reality for Retrosigmoid Craniotomy Planning. Skull Base Surg 2021; 83:e564-e573. [DOI: 10.1055/s-0041-1735509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
AbstractWhile medical imaging data have traditionally been viewed on two-dimensional (2D) displays, augmented reality (AR) allows physicians to project the medical imaging data on patient's bodies to locate important anatomy. We present a surgical AR application to plan the retrosigmoid craniotomy, a standard approach to access the posterior fossa and the internal auditory canal. As a simple and accurate alternative to surface landmarks and conventional surgical navigation systems, our AR application augments the surgeon's vision to guide the optimal location of cortical bone removal. In this work, two surgeons performed a retrosigmoid approach 14 times on eight cadaver heads. In each case, the surgeon manually aligned a computed tomography (CT)-derived virtual rendering of the sigmoid sinus on the real cadaveric heads using a see-through AR display, allowing the surgeon to plan and perform the craniotomy accordingly. Postprocedure CT scans were acquired to assess the accuracy of the retrosigmoid craniotomies with respect to their intended location relative to the dural sinuses. The two surgeons had a mean margin of davg = 0.6 ± 4.7 mm and davg = 3.7 ± 2.3 mm between the osteotomy border and the dural sinuses over all their cases, respectively, and only positive margins for 12 of the 14 cases. The intended surgical approach to the internal auditory canal was successfully achieved in all cases using the proposed method, and the relatively small and consistent margins suggest that our system has the potential to be a valuable tool to facilitate planning a variety of similar skull-base procedures.
Collapse
Affiliation(s)
- Caio A. Neves
- Department of Otolaryngology, Stanford School of Medicine, Stanford, United States
- Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Christoph Leuze
- Department of Radiology, Stanford School of Medicine, Stanford, United States
| | - Alejandro M. Gomez
- Chair for Computer Aided Medical Procedures and Augmented Reality, Department of Informatics, Technical University of Munich, Germany
- Laboratory for Computer Aided Medical Procedures, Whiting School of Engineering, Johns Hopkins University, Baltimore, USA
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures and Augmented Reality, Department of Informatics, Technical University of Munich, Germany
- Laboratory for Computer Aided Medical Procedures, Whiting School of Engineering, Johns Hopkins University, Baltimore, USA
| | - Nikolas Blevins
- Department of Otolaryngology, Stanford School of Medicine, Stanford, United States
| | - Yona Vaisbuch
- Department of Otolaryngology, Stanford School of Medicine, Stanford, United States
| | - Jennifer A. McNab
- Department of Radiology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
8
|
Barber SR. New Navigation Approaches for Endoscopic Lateral Skull Base Surgery. Otolaryngol Clin North Am 2021; 54:175-187. [PMID: 33243374 DOI: 10.1016/j.otc.2020.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Image-guided navigation is well established for surgery of the brain and anterior skull base. Although navigation workstations have been used widely by neurosurgeons and rhinologists for decades, utilization in the lateral skull base (LSB) has been less due to stricter requirements for overall accuracy less than 1 mm in this region. Endoscopic approaches to the LSB facilitate minimally invasive surgeries with less morbidity, yet there are risks of injury to critical structures. With improvements in technology over the years, image-guided navigation for endoscopic LSB surgery can reduce operative time, optimize exposure for surgical corridors, and increase safety in difficult cases.
Collapse
Affiliation(s)
- Samuel R Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, AZ 85724, USA.
| |
Collapse
|
9
|
Taeger J, Müller-Graff FT, Neun T, Köping M, Schendzielorz P, Hagen R, Rak K. Highly precise navigation at the lateral skull base by the combination of flat-panel volume CT and electromagnetic navigation. Sci Prog 2021; 104:368504211032090. [PMID: 34397283 PMCID: PMC10450718 DOI: 10.1177/00368504211032090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.
Collapse
Affiliation(s)
- Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Tilmann Neun
- Institute for Diagnostical and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Maria Köping
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Philipp Schendzielorz
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|